#[doc =" An implementation of the SHA-1 cryptographic hash. First create a `sha1` object using the `sha1` constructor, then feed it input using the `input` or `input_str` methods, which may be called any number of times. After the entire input has been fed to the hash read the result using the `result` or `result_str` methods. The `sha1` object may be reused to create multiple hashes by calling the `reset` method. "]; /* * A SHA-1 implementation derived from Paul E. Jones's reference * implementation, which is written for clarity, not speed. At some * point this will want to be rewritten. */ export sha1; #[doc = "The SHA-1 interface"] iface sha1 { #[doc = "Provide message input as bytes"] fn input([u8]/~); #[doc = "Provide message input as string"] fn input_str(str); #[doc = " Read the digest as a vector of 20 bytes. After calling this no further input may be provided until reset is called. "] fn result() -> [u8]/~; #[doc = " Read the digest as a hex string. After calling this no further input may be provided until reset is called. "] fn result_str() -> str; #[doc = "Reset the SHA-1 state for reuse"] fn reset(); } // Some unexported constants const digest_buf_len: uint = 5u; const msg_block_len: uint = 64u; const work_buf_len: uint = 80u; const k0: u32 = 0x5A827999u32; const k1: u32 = 0x6ED9EBA1u32; const k2: u32 = 0x8F1BBCDCu32; const k3: u32 = 0xCA62C1D6u32; #[doc = "Construct a `sha` object"] fn sha1() -> sha1 { type sha1state = {h: [mut u32]/~, mut len_low: u32, mut len_high: u32, msg_block: [mut u8]/~, mut msg_block_idx: uint, mut computed: bool, work_buf: @[mut u32]/~}; fn add_input(st: sha1state, msg: [u8]/~) { /* FIXME: Should be typestate precondition (#2345) */ assert (!st.computed); for vec::each(msg) {|element| st.msg_block[st.msg_block_idx] = element; st.msg_block_idx += 1u; st.len_low += 8u32; if st.len_low == 0u32 { st.len_high += 1u32; if st.len_high == 0u32 { // FIXME: Need better failure mode (#2346) fail; } } if st.msg_block_idx == msg_block_len { process_msg_block(st); } } } fn process_msg_block(st: sha1state) { // FIXME: Make precondition (#2345) assert (vec::len(st.h) == digest_buf_len); assert (vec::len(*st.work_buf) == work_buf_len); let mut t: int; // Loop counter let w = st.work_buf; // Initialize the first 16 words of the vector w t = 0; while t < 16 { let mut tmp; tmp = (st.msg_block[t * 4] as u32) << 24u32; tmp = tmp | (st.msg_block[t * 4 + 1] as u32) << 16u32; tmp = tmp | (st.msg_block[t * 4 + 2] as u32) << 8u32; tmp = tmp | (st.msg_block[t * 4 + 3] as u32); w[t] = tmp; t += 1; } // Initialize the rest of vector w while t < 80 { let val = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16]; w[t] = circular_shift(1u32, val); t += 1; } let mut a = st.h[0]; let mut b = st.h[1]; let mut c = st.h[2]; let mut d = st.h[3]; let mut e = st.h[4]; let mut temp: u32; t = 0; while t < 20 { temp = circular_shift(5u32, a) + (b & c | !b & d) + e + w[t] + k0; e = d; d = c; c = circular_shift(30u32, b); b = a; a = temp; t += 1; } while t < 40 { temp = circular_shift(5u32, a) + (b ^ c ^ d) + e + w[t] + k1; e = d; d = c; c = circular_shift(30u32, b); b = a; a = temp; t += 1; } while t < 60 { temp = circular_shift(5u32, a) + (b & c | b & d | c & d) + e + w[t] + k2; e = d; d = c; c = circular_shift(30u32, b); b = a; a = temp; t += 1; } while t < 80 { temp = circular_shift(5u32, a) + (b ^ c ^ d) + e + w[t] + k3; e = d; d = c; c = circular_shift(30u32, b); b = a; a = temp; t += 1; } st.h[0] = st.h[0] + a; st.h[1] = st.h[1] + b; st.h[2] = st.h[2] + c; st.h[3] = st.h[3] + d; st.h[4] = st.h[4] + e; st.msg_block_idx = 0u; } fn circular_shift(bits: u32, word: u32) -> u32 { ret word << bits | word >> 32u32 - bits; } fn mk_result(st: sha1state) -> [u8]/~ { if !st.computed { pad_msg(st); st.computed = true; } let mut rs: [u8]/~ = []/~; for vec::each(st.h) {|hpart| let a = (hpart >> 24u32 & 0xFFu32) as u8; let b = (hpart >> 16u32 & 0xFFu32) as u8; let c = (hpart >> 8u32 & 0xFFu32) as u8; let d = (hpart & 0xFFu32) as u8; rs = vec::append(rs, [a, b, c, d]/~); } ret rs; } /* * According to the standard, the message must be padded to an even * 512 bits. The first padding bit must be a '1'. The last 64 bits * represent the length of the original message. All bits in between * should be 0. This function will pad the message according to those * rules by filling the msg_block vector accordingly. It will also * call process_msg_block() appropriately. When it returns, it * can be assumed that the message digest has been computed. */ fn pad_msg(st: sha1state) { // FIXME: Should be a precondition (#2345) assert (vec::len(st.msg_block) == msg_block_len); /* * Check to see if the current message block is too small to hold * the initial padding bits and length. If so, we will pad the * block, process it, and then continue padding into a second block. */ if st.msg_block_idx > 55u { st.msg_block[st.msg_block_idx] = 0x80u8; st.msg_block_idx += 1u; while st.msg_block_idx < msg_block_len { st.msg_block[st.msg_block_idx] = 0u8; st.msg_block_idx += 1u; } process_msg_block(st); } else { st.msg_block[st.msg_block_idx] = 0x80u8; st.msg_block_idx += 1u; } while st.msg_block_idx < 56u { st.msg_block[st.msg_block_idx] = 0u8; st.msg_block_idx += 1u; } // Store the message length as the last 8 octets st.msg_block[56] = (st.len_high >> 24u32 & 0xFFu32) as u8; st.msg_block[57] = (st.len_high >> 16u32 & 0xFFu32) as u8; st.msg_block[58] = (st.len_high >> 8u32 & 0xFFu32) as u8; st.msg_block[59] = (st.len_high & 0xFFu32) as u8; st.msg_block[60] = (st.len_low >> 24u32 & 0xFFu32) as u8; st.msg_block[61] = (st.len_low >> 16u32 & 0xFFu32) as u8; st.msg_block[62] = (st.len_low >> 8u32 & 0xFFu32) as u8; st.msg_block[63] = (st.len_low & 0xFFu32) as u8; process_msg_block(st); } impl of sha1 for sha1state { fn reset() { // FIXME: Should be typestate precondition (#2345) assert (vec::len(self.h) == digest_buf_len); self.len_low = 0u32; self.len_high = 0u32; self.msg_block_idx = 0u; self.h[0] = 0x67452301u32; self.h[1] = 0xEFCDAB89u32; self.h[2] = 0x98BADCFEu32; self.h[3] = 0x10325476u32; self.h[4] = 0xC3D2E1F0u32; self.computed = false; } fn input(msg: [u8]/~) { add_input(self, msg); } fn input_str(msg: str) { add_input(self, str::bytes(msg)); } fn result() -> [u8]/~ { ret mk_result(self); } fn result_str() -> str { let r = mk_result(self); let mut s = ""; for vec::each(r) {|b| s += uint::to_str(b as uint, 16u); } ret s; } } let st = { h: vec::to_mut(vec::from_elem(digest_buf_len, 0u32)), mut len_low: 0u32, mut len_high: 0u32, msg_block: vec::to_mut(vec::from_elem(msg_block_len, 0u8)), mut msg_block_idx: 0u, mut computed: false, work_buf: @vec::to_mut(vec::from_elem(work_buf_len, 0u32)) }; let sh = st as sha1; sh.reset(); ret sh; } #[cfg(test)] mod tests { #[test] fn test() unsafe { type test = {input: str, output: [u8]/~}; fn a_million_letter_a() -> str { let mut i = 0; let mut rs = ""; while i < 100000 { rs += "aaaaaaaaaa"; i += 1; } ret rs; } // Test messages from FIPS 180-1 let fips_180_1_tests: [test]/~ = [{input: "abc", output: [0xA9u8, 0x99u8, 0x3Eu8, 0x36u8, 0x47u8, 0x06u8, 0x81u8, 0x6Au8, 0xBAu8, 0x3Eu8, 0x25u8, 0x71u8, 0x78u8, 0x50u8, 0xC2u8, 0x6Cu8, 0x9Cu8, 0xD0u8, 0xD8u8, 0x9Du8]/~}, {input: "abcdbcdecdefdefgefghfghighij" + "hijkijkljklmklmnlmnomnopnopq", output: [0x84u8, 0x98u8, 0x3Eu8, 0x44u8, 0x1Cu8, 0x3Bu8, 0xD2u8, 0x6Eu8, 0xBAu8, 0xAEu8, 0x4Au8, 0xA1u8, 0xF9u8, 0x51u8, 0x29u8, 0xE5u8, 0xE5u8, 0x46u8, 0x70u8, 0xF1u8]/~}, {input: a_million_letter_a(), output: [0x34u8, 0xAAu8, 0x97u8, 0x3Cu8, 0xD4u8, 0xC4u8, 0xDAu8, 0xA4u8, 0xF6u8, 0x1Eu8, 0xEBu8, 0x2Bu8, 0xDBu8, 0xADu8, 0x27u8, 0x31u8, 0x65u8, 0x34u8, 0x01u8, 0x6Fu8]/~}]/~; // Examples from wikipedia let wikipedia_tests: [test]/~ = [{input: "The quick brown fox jumps over the lazy dog", output: [0x2fu8, 0xd4u8, 0xe1u8, 0xc6u8, 0x7au8, 0x2du8, 0x28u8, 0xfcu8, 0xedu8, 0x84u8, 0x9eu8, 0xe1u8, 0xbbu8, 0x76u8, 0xe7u8, 0x39u8, 0x1bu8, 0x93u8, 0xebu8, 0x12u8]/~}, {input: "The quick brown fox jumps over the lazy cog", output: [0xdeu8, 0x9fu8, 0x2cu8, 0x7fu8, 0xd2u8, 0x5eu8, 0x1bu8, 0x3au8, 0xfau8, 0xd3u8, 0xe8u8, 0x5au8, 0x0bu8, 0xd1u8, 0x7du8, 0x9bu8, 0x10u8, 0x0du8, 0xb4u8, 0xb3u8]/~}]/~; let tests = fips_180_1_tests + wikipedia_tests; fn check_vec_eq(v0: [u8]/~, v1: [u8]/~) { assert (vec::len::(v0) == vec::len::(v1)); let len = vec::len::(v0); let mut i = 0u; while i < len { let a = v0[i]; let b = v1[i]; assert (a == b); i += 1u; } } // Test that it works when accepting the message all at once let sh = sha1::sha1(); for vec::each(tests) {|t| sh.input_str(t.input); let out = sh.result(); check_vec_eq(t.output, out); sh.reset(); } // Test that it works when accepting the message in pieces for vec::each(tests) {|t| let len = str::len(t.input); let mut left = len; while left > 0u { let take = (left + 1u) / 2u; sh.input_str(str::slice(t.input, len - left, take + len - left)); left = left - take; } let out = sh.result(); check_vec_eq(t.output, out); sh.reset(); } } } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: