//! Util methods for [`rustc_middle::ty`] #![allow(clippy::module_name_repetitions)] use core::ops::ControlFlow; use itertools::Itertools; use rustc_ast::ast::Mutability; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_hir as hir; use rustc_hir::def::{CtorKind, CtorOf, DefKind, Res}; use rustc_hir::def_id::DefId; use rustc_hir::{Expr, FnDecl, LangItem, TyKind, Unsafety}; use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind}; use rustc_infer::infer::TyCtxtInferExt; use rustc_lint::LateContext; use rustc_middle::mir::interpret::Scalar; use rustc_middle::mir::ConstValue; use rustc_middle::traits::EvaluationResult; use rustc_middle::ty::layout::ValidityRequirement; use rustc_middle::ty::{ self, AdtDef, AliasTy, AssocKind, Binder, BoundRegion, FnSig, GenericArg, GenericArgKind, GenericArgsRef, GenericParamDefKind, IntTy, List, ParamEnv, Region, RegionKind, ToPredicate, TraitRef, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor, UintTy, VariantDef, VariantDiscr, }; use rustc_span::symbol::Ident; use rustc_span::{sym, Span, Symbol, DUMMY_SP}; use rustc_target::abi::{Size, VariantIdx}; use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _; use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt; use rustc_trait_selection::traits::{Obligation, ObligationCause}; use std::assert_matches::debug_assert_matches; use std::iter; use crate::{match_def_path, path_res}; mod type_certainty; pub use type_certainty::expr_type_is_certain; /// Checks if the given type implements copy. pub fn is_copy<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { ty.is_copy_modulo_regions(cx.tcx, cx.param_env) } /// This checks whether a given type is known to implement Debug. pub fn has_debug_impl<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { cx.tcx .get_diagnostic_item(sym::Debug) .map_or(false, |debug| implements_trait(cx, ty, debug, &[])) } /// Checks whether a type can be partially moved. pub fn can_partially_move_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { if has_drop(cx, ty) || is_copy(cx, ty) { return false; } match ty.kind() { ty::Param(_) => false, ty::Adt(def, subs) => def.all_fields().any(|f| !is_copy(cx, f.ty(cx.tcx, subs))), _ => true, } } /// Walks into `ty` and returns `true` if any inner type is an instance of the given adt /// constructor. pub fn contains_adt_constructor<'tcx>(ty: Ty<'tcx>, adt: AdtDef<'tcx>) -> bool { ty.walk().any(|inner| match inner.unpack() { GenericArgKind::Type(inner_ty) => inner_ty.ty_adt_def() == Some(adt), GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => false, }) } /// Walks into `ty` and returns `true` if any inner type is an instance of the given type, or adt /// constructor of the same type. /// /// This method also recurses into opaque type predicates, so call it with `impl Trait` and `U` /// will also return `true`. pub fn contains_ty_adt_constructor_opaque<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, needle: Ty<'tcx>) -> bool { fn contains_ty_adt_constructor_opaque_inner<'tcx>( cx: &LateContext<'tcx>, ty: Ty<'tcx>, needle: Ty<'tcx>, seen: &mut FxHashSet, ) -> bool { ty.walk().any(|inner| match inner.unpack() { GenericArgKind::Type(inner_ty) => { if inner_ty == needle { return true; } if inner_ty.ty_adt_def() == needle.ty_adt_def() { return true; } if let ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }) = *inner_ty.kind() { if !seen.insert(def_id) { return false; } for (predicate, _span) in cx.tcx.explicit_item_super_predicates(def_id).instantiate_identity_iter_copied() { match predicate.kind().skip_binder() { // For `impl Trait`, it will register a predicate of `T: Trait`, so we go through // and check substitutions to find `U`. ty::ClauseKind::Trait(trait_predicate) => { if trait_predicate .trait_ref .args .types() .skip(1) // Skip the implicit `Self` generic parameter .any(|ty| contains_ty_adt_constructor_opaque_inner(cx, ty, needle, seen)) { return true; } }, // For `impl Trait`, it will register a predicate of `::Assoc = U`, // so we check the term for `U`. ty::ClauseKind::Projection(projection_predicate) => { if let ty::TermKind::Ty(ty) = projection_predicate.term.unpack() { if contains_ty_adt_constructor_opaque_inner(cx, ty, needle, seen) { return true; } }; }, _ => (), } } } false }, GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => false, }) } // A hash set to ensure that the same opaque type (`impl Trait` in RPIT or TAIT) is not // visited twice. let mut seen = FxHashSet::default(); contains_ty_adt_constructor_opaque_inner(cx, ty, needle, &mut seen) } /// Resolves `::Item` for `T` /// Do not invoke without first verifying that the type implements `Iterator` pub fn get_iterator_item_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option> { cx.tcx .get_diagnostic_item(sym::Iterator) .and_then(|iter_did| cx.get_associated_type(ty, iter_did, "Item")) } /// Get the diagnostic name of a type, e.g. `sym::HashMap`. To check if a type /// implements a trait marked with a diagnostic item use [`implements_trait`]. /// /// For a further exploitation what diagnostic items are see [diagnostic items] in /// rustc-dev-guide. /// /// [Diagnostic Items]: https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-items.html pub fn get_type_diagnostic_name(cx: &LateContext<'_>, ty: Ty<'_>) -> Option { match ty.kind() { ty::Adt(adt, _) => cx.tcx.get_diagnostic_name(adt.did()), _ => None, } } /// Returns true if ty has `iter` or `iter_mut` methods pub fn has_iter_method(cx: &LateContext<'_>, probably_ref_ty: Ty<'_>) -> Option { // FIXME: instead of this hard-coded list, we should check if `::iter` // exists and has the desired signature. Unfortunately FnCtxt is not exported // so we can't use its `lookup_method` method. let into_iter_collections: &[Symbol] = &[ sym::Vec, sym::Option, sym::Result, sym::BTreeMap, sym::BTreeSet, sym::VecDeque, sym::LinkedList, sym::BinaryHeap, sym::HashSet, sym::HashMap, sym::PathBuf, sym::Path, sym::Receiver, ]; let ty_to_check = match probably_ref_ty.kind() { ty::Ref(_, ty_to_check, _) => *ty_to_check, _ => probably_ref_ty, }; let def_id = match ty_to_check.kind() { ty::Array(..) => return Some(sym::array), ty::Slice(..) => return Some(sym::slice), ty::Adt(adt, _) => adt.did(), _ => return None, }; for &name in into_iter_collections { if cx.tcx.is_diagnostic_item(name, def_id) { return Some(cx.tcx.item_name(def_id)); } } None } /// Checks whether a type implements a trait. /// The function returns false in case the type contains an inference variable. /// /// See: /// * [`get_trait_def_id`](super::get_trait_def_id) to get a trait [`DefId`]. /// * [Common tools for writing lints] for an example how to use this function and other options. /// /// [Common tools for writing lints]: https://github.com/rust-lang/rust-clippy/blob/master/book/src/development/common_tools_writing_lints.md#checking-if-a-type-implements-a-specific-trait pub fn implements_trait<'tcx>( cx: &LateContext<'tcx>, ty: Ty<'tcx>, trait_id: DefId, args: &[GenericArg<'tcx>], ) -> bool { implements_trait_with_env_from_iter(cx.tcx, cx.param_env, ty, trait_id, None, args.iter().map(|&x| Some(x))) } /// Same as `implements_trait` but allows using a `ParamEnv` different from the lint context. /// /// The `callee_id` argument is used to determine whether this is a function call in a `const fn` /// environment, used for checking const traits. pub fn implements_trait_with_env<'tcx>( tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, ty: Ty<'tcx>, trait_id: DefId, callee_id: Option, args: &[GenericArg<'tcx>], ) -> bool { implements_trait_with_env_from_iter(tcx, param_env, ty, trait_id, callee_id, args.iter().map(|&x| Some(x))) } /// Same as `implements_trait_from_env` but takes the arguments as an iterator. pub fn implements_trait_with_env_from_iter<'tcx>( tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, ty: Ty<'tcx>, trait_id: DefId, callee_id: Option, args: impl IntoIterator>>>, ) -> bool { // Clippy shouldn't have infer types assert!(!ty.has_infer()); // If a `callee_id` is passed, then we assert that it is a body owner // through calling `body_owner_kind`, which would panic if the callee // does not have a body. if let Some(callee_id) = callee_id { let _ = tcx.hir().body_owner_kind(callee_id); } let ty = tcx.erase_regions(ty); if ty.has_escaping_bound_vars() { return false; } let infcx = tcx.infer_ctxt().build(); let args = args .into_iter() .map(|arg| { arg.into().unwrap_or_else(|| { let orig = TypeVariableOrigin { kind: TypeVariableOriginKind::MiscVariable, span: DUMMY_SP, }; infcx.next_ty_var(orig).into() }) }) .collect::>(); // If an effect arg was not specified, we need to specify it. let effect_arg = if tcx .generics_of(trait_id) .host_effect_index .is_some_and(|x| args.get(x - 1).is_none()) { Some(GenericArg::from(callee_id.map_or(tcx.consts.true_, |def_id| { tcx.expected_host_effect_param_for_body(def_id) }))) } else { None }; let trait_ref = TraitRef::new( tcx, trait_id, Some(GenericArg::from(ty)).into_iter().chain(args).chain(effect_arg), ); debug_assert_matches!( tcx.def_kind(trait_id), DefKind::Trait | DefKind::TraitAlias, "`DefId` must belong to a trait or trait alias" ); #[cfg(debug_assertions)] assert_generic_args_match(tcx, trait_id, trait_ref.args); let obligation = Obligation { cause: ObligationCause::dummy(), param_env, recursion_depth: 0, predicate: ty::Binder::dummy(trait_ref).to_predicate(tcx), }; infcx .evaluate_obligation(&obligation) .is_ok_and(EvaluationResult::must_apply_modulo_regions) } /// Checks whether this type implements `Drop`. pub fn has_drop<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { match ty.ty_adt_def() { Some(def) => def.has_dtor(cx.tcx), None => false, } } // Returns whether the type has #[must_use] attribute pub fn is_must_use_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { match ty.kind() { ty::Adt(adt, _) => cx.tcx.has_attr(adt.did(), sym::must_use), ty::Foreign(did) => cx.tcx.has_attr(*did, sym::must_use), ty::Slice(ty) | ty::Array(ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => { // for the Array case we don't need to care for the len == 0 case // because we don't want to lint functions returning empty arrays is_must_use_ty(cx, *ty) }, ty::Tuple(args) => args.iter().any(|ty| is_must_use_ty(cx, ty)), ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }) => { for (predicate, _) in cx.tcx.explicit_item_super_predicates(def_id).skip_binder() { if let ty::ClauseKind::Trait(trait_predicate) = predicate.kind().skip_binder() { if cx.tcx.has_attr(trait_predicate.trait_ref.def_id, sym::must_use) { return true; } } } false }, ty::Dynamic(binder, _, _) => { for predicate in *binder { if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate.skip_binder() { if cx.tcx.has_attr(trait_ref.def_id, sym::must_use) { return true; } } } false }, _ => false, } } // FIXME: Per https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/infer/at/struct.At.html#method.normalize // this function can be removed once the `normalize` method does not panic when normalization does // not succeed /// Checks if `Ty` is normalizable. This function is useful /// to avoid crashes on `layout_of`. pub fn is_normalizable<'tcx>(cx: &LateContext<'tcx>, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool { is_normalizable_helper(cx, param_env, ty, &mut FxHashMap::default()) } fn is_normalizable_helper<'tcx>( cx: &LateContext<'tcx>, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, cache: &mut FxHashMap, bool>, ) -> bool { if let Some(&cached_result) = cache.get(&ty) { return cached_result; } // prevent recursive loops, false-negative is better than endless loop leading to stack overflow cache.insert(ty, false); let infcx = cx.tcx.infer_ctxt().build(); let cause = rustc_middle::traits::ObligationCause::dummy(); let result = if infcx.at(&cause, param_env).query_normalize(ty).is_ok() { match ty.kind() { ty::Adt(def, args) => def.variants().iter().all(|variant| { variant .fields .iter() .all(|field| is_normalizable_helper(cx, param_env, field.ty(cx.tcx, args), cache)) }), _ => ty.walk().all(|generic_arg| match generic_arg.unpack() { GenericArgKind::Type(inner_ty) if inner_ty != ty => { is_normalizable_helper(cx, param_env, inner_ty, cache) }, _ => true, // if inner_ty == ty, we've already checked it }), } } else { false }; cache.insert(ty, result); result } /// Returns `true` if the given type is a non aggregate primitive (a `bool` or `char`, any /// integer or floating-point number type). For checking aggregation of primitive types (e.g. /// tuples and slices of primitive type) see `is_recursively_primitive_type` pub fn is_non_aggregate_primitive_type(ty: Ty<'_>) -> bool { matches!(ty.kind(), ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_)) } /// Returns `true` if the given type is a primitive (a `bool` or `char`, any integer or /// floating-point number type, a `str`, or an array, slice, or tuple of those types). pub fn is_recursively_primitive_type(ty: Ty<'_>) -> bool { match *ty.kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str => true, ty::Ref(_, inner, _) if inner.is_str() => true, ty::Array(inner_type, _) | ty::Slice(inner_type) => is_recursively_primitive_type(inner_type), ty::Tuple(inner_types) => inner_types.iter().all(is_recursively_primitive_type), _ => false, } } /// Checks if the type is a reference equals to a diagnostic item pub fn is_type_ref_to_diagnostic_item(cx: &LateContext<'_>, ty: Ty<'_>, diag_item: Symbol) -> bool { match ty.kind() { ty::Ref(_, ref_ty, _) => match ref_ty.kind() { ty::Adt(adt, _) => cx.tcx.is_diagnostic_item(diag_item, adt.did()), _ => false, }, _ => false, } } /// Checks if the type is equal to a diagnostic item. To check if a type implements a /// trait marked with a diagnostic item use [`implements_trait`]. /// /// For a further exploitation what diagnostic items are see [diagnostic items] in /// rustc-dev-guide. /// /// --- /// /// If you change the signature, remember to update the internal lint `MatchTypeOnDiagItem` /// /// [Diagnostic Items]: https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-items.html pub fn is_type_diagnostic_item(cx: &LateContext<'_>, ty: Ty<'_>, diag_item: Symbol) -> bool { match ty.kind() { ty::Adt(adt, _) => cx.tcx.is_diagnostic_item(diag_item, adt.did()), _ => false, } } /// Checks if the type is equal to a lang item. /// /// Returns `false` if the `LangItem` is not defined. pub fn is_type_lang_item(cx: &LateContext<'_>, ty: Ty<'_>, lang_item: hir::LangItem) -> bool { match ty.kind() { ty::Adt(adt, _) => cx.tcx.lang_items().get(lang_item) == Some(adt.did()), _ => false, } } /// Gets the diagnostic name of the type, if it has one pub fn type_diagnostic_name(cx: &LateContext<'_>, ty: Ty<'_>) -> Option { ty.ty_adt_def().and_then(|adt| cx.tcx.get_diagnostic_name(adt.did())) } /// Return `true` if the passed `typ` is `isize` or `usize`. pub fn is_isize_or_usize(typ: Ty<'_>) -> bool { matches!(typ.kind(), ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize)) } /// Checks if type is struct, enum or union type with the given def path. /// /// If the type is a diagnostic item, use `is_type_diagnostic_item` instead. /// If you change the signature, remember to update the internal lint `MatchTypeOnDiagItem` pub fn match_type(cx: &LateContext<'_>, ty: Ty<'_>, path: &[&str]) -> bool { match ty.kind() { ty::Adt(adt, _) => match_def_path(cx, adt.did(), path), _ => false, } } /// Checks if the drop order for a type matters. Some std types implement drop solely to /// deallocate memory. For these types, and composites containing them, changing the drop order /// won't result in any observable side effects. pub fn needs_ordered_drop<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { fn needs_ordered_drop_inner<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, seen: &mut FxHashSet>) -> bool { if !seen.insert(ty) { return false; } if !ty.has_significant_drop(cx.tcx, cx.param_env) { false } // Check for std types which implement drop, but only for memory allocation. else if is_type_lang_item(cx, ty, LangItem::OwnedBox) || matches!( get_type_diagnostic_name(cx, ty), Some(sym::HashSet | sym::Rc | sym::Arc | sym::cstring_type | sym::RcWeak | sym::ArcWeak) ) { // Check all of the generic arguments. if let ty::Adt(_, subs) = ty.kind() { subs.types().any(|ty| needs_ordered_drop_inner(cx, ty, seen)) } else { true } } else if !cx .tcx .lang_items() .drop_trait() .map_or(false, |id| implements_trait(cx, ty, id, &[])) { // This type doesn't implement drop, so no side effects here. // Check if any component type has any. match ty.kind() { ty::Tuple(fields) => fields.iter().any(|ty| needs_ordered_drop_inner(cx, ty, seen)), ty::Array(ty, _) => needs_ordered_drop_inner(cx, *ty, seen), ty::Adt(adt, subs) => adt .all_fields() .map(|f| f.ty(cx.tcx, subs)) .any(|ty| needs_ordered_drop_inner(cx, ty, seen)), _ => true, } } else { true } } needs_ordered_drop_inner(cx, ty, &mut FxHashSet::default()) } /// Peels off all references on the type. Returns the underlying type and the number of references /// removed. pub fn peel_mid_ty_refs(ty: Ty<'_>) -> (Ty<'_>, usize) { fn peel(ty: Ty<'_>, count: usize) -> (Ty<'_>, usize) { if let ty::Ref(_, ty, _) = ty.kind() { peel(*ty, count + 1) } else { (ty, count) } } peel(ty, 0) } /// Peels off all references on the type. Returns the underlying type, the number of references /// removed, and whether the pointer is ultimately mutable or not. pub fn peel_mid_ty_refs_is_mutable(ty: Ty<'_>) -> (Ty<'_>, usize, Mutability) { fn f(ty: Ty<'_>, count: usize, mutability: Mutability) -> (Ty<'_>, usize, Mutability) { match ty.kind() { ty::Ref(_, ty, Mutability::Mut) => f(*ty, count + 1, mutability), ty::Ref(_, ty, Mutability::Not) => f(*ty, count + 1, Mutability::Not), _ => (ty, count, mutability), } } f(ty, 0, Mutability::Mut) } /// Returns `true` if the given type is an `unsafe` function. pub fn type_is_unsafe_function<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { match ty.kind() { ty::FnDef(..) | ty::FnPtr(_) => ty.fn_sig(cx.tcx).unsafety() == Unsafety::Unsafe, _ => false, } } /// Returns the base type for HIR references and pointers. pub fn walk_ptrs_hir_ty<'tcx>(ty: &'tcx hir::Ty<'tcx>) -> &'tcx hir::Ty<'tcx> { match ty.kind { TyKind::Ptr(ref mut_ty) | TyKind::Ref(_, ref mut_ty) => walk_ptrs_hir_ty(mut_ty.ty), _ => ty, } } /// Returns the base type for references and raw pointers, and count reference /// depth. pub fn walk_ptrs_ty_depth(ty: Ty<'_>) -> (Ty<'_>, usize) { fn inner(ty: Ty<'_>, depth: usize) -> (Ty<'_>, usize) { match ty.kind() { ty::Ref(_, ty, _) => inner(*ty, depth + 1), _ => (ty, depth), } } inner(ty, 0) } /// Returns `true` if types `a` and `b` are same types having same `Const` generic args, /// otherwise returns `false` pub fn same_type_and_consts<'tcx>(a: Ty<'tcx>, b: Ty<'tcx>) -> bool { match (&a.kind(), &b.kind()) { (&ty::Adt(did_a, args_a), &ty::Adt(did_b, args_b)) => { if did_a != did_b { return false; } args_a .iter() .zip(args_b.iter()) .all(|(arg_a, arg_b)| match (arg_a.unpack(), arg_b.unpack()) { (GenericArgKind::Const(inner_a), GenericArgKind::Const(inner_b)) => inner_a == inner_b, (GenericArgKind::Type(type_a), GenericArgKind::Type(type_b)) => { same_type_and_consts(type_a, type_b) }, _ => true, }) }, _ => a == b, } } /// Checks if a given type looks safe to be uninitialized. pub fn is_uninit_value_valid_for_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { cx.tcx .check_validity_requirement((ValidityRequirement::Uninit, cx.param_env.and(ty))) .unwrap_or_else(|_| is_uninit_value_valid_for_ty_fallback(cx, ty)) } /// A fallback for polymorphic types, which are not supported by `check_validity_requirement`. fn is_uninit_value_valid_for_ty_fallback<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { match *ty.kind() { // The array length may be polymorphic, let's try the inner type. ty::Array(component, _) => is_uninit_value_valid_for_ty(cx, component), // Peek through tuples and try their fallbacks. ty::Tuple(types) => types.iter().all(|ty| is_uninit_value_valid_for_ty(cx, ty)), // Unions are always fine right now. // This includes MaybeUninit, the main way people use uninitialized memory. // For ADTs, we could look at all fields just like for tuples, but that's potentially // exponential, so let's avoid doing that for now. Code doing that is sketchy enough to // just use an `#[allow()]`. ty::Adt(adt, _) => adt.is_union(), // For the rest, conservatively assume that they cannot be uninit. _ => false, } } /// Gets an iterator over all predicates which apply to the given item. pub fn all_predicates_of(tcx: TyCtxt<'_>, id: DefId) -> impl Iterator, Span)> { let mut next_id = Some(id); iter::from_fn(move || { next_id.take().map(|id| { let preds = tcx.predicates_of(id); next_id = preds.parent; preds.predicates.iter() }) }) .flatten() } /// A signature for a function like type. #[derive(Clone, Copy)] pub enum ExprFnSig<'tcx> { Sig(Binder<'tcx, FnSig<'tcx>>, Option), Closure(Option<&'tcx FnDecl<'tcx>>, Binder<'tcx, FnSig<'tcx>>), Trait(Binder<'tcx, Ty<'tcx>>, Option>>, Option), } impl<'tcx> ExprFnSig<'tcx> { /// Gets the argument type at the given offset. This will return `None` when the index is out of /// bounds only for variadic functions, otherwise this will panic. pub fn input(self, i: usize) -> Option>> { match self { Self::Sig(sig, _) => { if sig.c_variadic() { sig.inputs().map_bound(|inputs| inputs.get(i).copied()).transpose() } else { Some(sig.input(i)) } }, Self::Closure(_, sig) => Some(sig.input(0).map_bound(|ty| ty.tuple_fields()[i])), Self::Trait(inputs, _, _) => Some(inputs.map_bound(|ty| ty.tuple_fields()[i])), } } /// Gets the argument type at the given offset. For closures this will also get the type as /// written. This will return `None` when the index is out of bounds only for variadic /// functions, otherwise this will panic. pub fn input_with_hir(self, i: usize) -> Option<(Option<&'tcx hir::Ty<'tcx>>, Binder<'tcx, Ty<'tcx>>)> { match self { Self::Sig(sig, _) => { if sig.c_variadic() { sig.inputs() .map_bound(|inputs| inputs.get(i).copied()) .transpose() .map(|arg| (None, arg)) } else { Some((None, sig.input(i))) } }, Self::Closure(decl, sig) => Some(( decl.and_then(|decl| decl.inputs.get(i)), sig.input(0).map_bound(|ty| ty.tuple_fields()[i]), )), Self::Trait(inputs, _, _) => Some((None, inputs.map_bound(|ty| ty.tuple_fields()[i]))), } } /// Gets the result type, if one could be found. Note that the result type of a trait may not be /// specified. pub fn output(self) -> Option>> { match self { Self::Sig(sig, _) | Self::Closure(_, sig) => Some(sig.output()), Self::Trait(_, output, _) => output, } } pub fn predicates_id(&self) -> Option { if let ExprFnSig::Sig(_, id) | ExprFnSig::Trait(_, _, id) = *self { id } else { None } } } /// If the expression is function like, get the signature for it. pub fn expr_sig<'tcx>(cx: &LateContext<'tcx>, expr: &Expr<'_>) -> Option> { if let Res::Def(DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn) | DefKind::AssocFn, id) = path_res(cx, expr) { Some(ExprFnSig::Sig(cx.tcx.fn_sig(id).instantiate_identity(), Some(id))) } else { ty_sig(cx, cx.typeck_results().expr_ty_adjusted(expr).peel_refs()) } } /// If the type is function like, get the signature for it. pub fn ty_sig<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option> { if ty.is_box() { return ty_sig(cx, ty.boxed_ty()); } match *ty.kind() { ty::Closure(id, subs) => { let decl = id .as_local() .and_then(|id| cx.tcx.hir().fn_decl_by_hir_id(cx.tcx.local_def_id_to_hir_id(id))); Some(ExprFnSig::Closure(decl, subs.as_closure().sig())) }, ty::FnDef(id, subs) => Some(ExprFnSig::Sig(cx.tcx.fn_sig(id).instantiate(cx.tcx, subs), Some(id))), ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => sig_from_bounds( cx, ty, cx.tcx.item_super_predicates(def_id).iter_instantiated(cx.tcx, args), cx.tcx.opt_parent(def_id), ), ty::FnPtr(sig) => Some(ExprFnSig::Sig(sig, None)), ty::Dynamic(bounds, _, _) => { let lang_items = cx.tcx.lang_items(); match bounds.principal() { Some(bound) if Some(bound.def_id()) == lang_items.fn_trait() || Some(bound.def_id()) == lang_items.fn_once_trait() || Some(bound.def_id()) == lang_items.fn_mut_trait() => { let output = bounds .projection_bounds() .find(|p| lang_items.fn_once_output().map_or(false, |id| id == p.item_def_id())) .map(|p| p.map_bound(|p| p.term.ty().unwrap())); Some(ExprFnSig::Trait(bound.map_bound(|b| b.args.type_at(0)), output, None)) }, _ => None, } }, ty::Alias(ty::Projection, proj) => match cx.tcx.try_normalize_erasing_regions(cx.param_env, ty) { Ok(normalized_ty) if normalized_ty != ty => ty_sig(cx, normalized_ty), _ => sig_for_projection(cx, proj).or_else(|| sig_from_bounds(cx, ty, cx.param_env.caller_bounds(), None)), }, ty::Param(_) => sig_from_bounds(cx, ty, cx.param_env.caller_bounds(), None), _ => None, } } fn sig_from_bounds<'tcx>( cx: &LateContext<'tcx>, ty: Ty<'tcx>, predicates: impl IntoIterator>, predicates_id: Option, ) -> Option> { let mut inputs = None; let mut output = None; let lang_items = cx.tcx.lang_items(); for pred in predicates { match pred.kind().skip_binder() { ty::ClauseKind::Trait(p) if (lang_items.fn_trait() == Some(p.def_id()) || lang_items.fn_mut_trait() == Some(p.def_id()) || lang_items.fn_once_trait() == Some(p.def_id())) && p.self_ty() == ty => { let i = pred.kind().rebind(p.trait_ref.args.type_at(1)); if inputs.map_or(false, |inputs| i != inputs) { // Multiple different fn trait impls. Is this even allowed? return None; } inputs = Some(i); }, ty::ClauseKind::Projection(p) if Some(p.projection_ty.def_id) == lang_items.fn_once_output() && p.projection_ty.self_ty() == ty => { if output.is_some() { // Multiple different fn trait impls. Is this even allowed? return None; } output = Some(pred.kind().rebind(p.term.ty().unwrap())); }, _ => (), } } inputs.map(|ty| ExprFnSig::Trait(ty, output, predicates_id)) } fn sig_for_projection<'tcx>(cx: &LateContext<'tcx>, ty: AliasTy<'tcx>) -> Option> { let mut inputs = None; let mut output = None; let lang_items = cx.tcx.lang_items(); for (pred, _) in cx .tcx .explicit_item_super_predicates(ty.def_id) .iter_instantiated_copied(cx.tcx, ty.args) { match pred.kind().skip_binder() { ty::ClauseKind::Trait(p) if (lang_items.fn_trait() == Some(p.def_id()) || lang_items.fn_mut_trait() == Some(p.def_id()) || lang_items.fn_once_trait() == Some(p.def_id())) => { let i = pred.kind().rebind(p.trait_ref.args.type_at(1)); if inputs.map_or(false, |inputs| inputs != i) { // Multiple different fn trait impls. Is this even allowed? return None; } inputs = Some(i); }, ty::ClauseKind::Projection(p) if Some(p.projection_ty.def_id) == lang_items.fn_once_output() => { if output.is_some() { // Multiple different fn trait impls. Is this even allowed? return None; } output = pred.kind().rebind(p.term.ty()).transpose(); }, _ => (), } } inputs.map(|ty| ExprFnSig::Trait(ty, output, None)) } #[derive(Clone, Copy)] pub enum EnumValue { Unsigned(u128), Signed(i128), } impl core::ops::Add for EnumValue { type Output = Self; fn add(self, n: u32) -> Self::Output { match self { Self::Unsigned(x) => Self::Unsigned(x + u128::from(n)), Self::Signed(x) => Self::Signed(x + i128::from(n)), } } } /// Attempts to read the given constant as though it were an enum value. #[expect(clippy::cast_possible_truncation, clippy::cast_possible_wrap)] pub fn read_explicit_enum_value(tcx: TyCtxt<'_>, id: DefId) -> Option { if let Ok(ConstValue::Scalar(Scalar::Int(value))) = tcx.const_eval_poly(id) { match tcx.type_of(id).instantiate_identity().kind() { ty::Int(_) => Some(EnumValue::Signed(match value.size().bytes() { 1 => i128::from(value.assert_bits(Size::from_bytes(1)) as u8 as i8), 2 => i128::from(value.assert_bits(Size::from_bytes(2)) as u16 as i16), 4 => i128::from(value.assert_bits(Size::from_bytes(4)) as u32 as i32), 8 => i128::from(value.assert_bits(Size::from_bytes(8)) as u64 as i64), 16 => value.assert_bits(Size::from_bytes(16)) as i128, _ => return None, })), ty::Uint(_) => Some(EnumValue::Unsigned(match value.size().bytes() { 1 => value.assert_bits(Size::from_bytes(1)), 2 => value.assert_bits(Size::from_bytes(2)), 4 => value.assert_bits(Size::from_bytes(4)), 8 => value.assert_bits(Size::from_bytes(8)), 16 => value.assert_bits(Size::from_bytes(16)), _ => return None, })), _ => None, } } else { None } } /// Gets the value of the given variant. pub fn get_discriminant_value(tcx: TyCtxt<'_>, adt: AdtDef<'_>, i: VariantIdx) -> EnumValue { let variant = &adt.variant(i); match variant.discr { VariantDiscr::Explicit(id) => read_explicit_enum_value(tcx, id).unwrap(), VariantDiscr::Relative(x) => match adt.variant((i.as_usize() - x as usize).into()).discr { VariantDiscr::Explicit(id) => read_explicit_enum_value(tcx, id).unwrap() + x, VariantDiscr::Relative(_) => EnumValue::Unsigned(x.into()), }, } } /// Check if the given type is either `core::ffi::c_void`, `std::os::raw::c_void`, or one of the /// platform specific `libc::::c_void` types in libc. pub fn is_c_void(cx: &LateContext<'_>, ty: Ty<'_>) -> bool { if let ty::Adt(adt, _) = ty.kind() && let &[krate, .., name] = &*cx.get_def_path(adt.did()) && let sym::libc | sym::core | sym::std = krate && name == rustc_span::sym::c_void { true } else { false } } pub fn for_each_top_level_late_bound_region( ty: Ty<'_>, f: impl FnMut(BoundRegion) -> ControlFlow, ) -> ControlFlow { struct V { index: u32, f: F, } impl<'tcx, B, F: FnMut(BoundRegion) -> ControlFlow> TypeVisitor> for V { type Result = ControlFlow; fn visit_region(&mut self, r: Region<'tcx>) -> Self::Result { if let RegionKind::ReBound(idx, bound) = r.kind() && idx.as_u32() == self.index { (self.f)(bound) } else { ControlFlow::Continue(()) } } fn visit_binder>>(&mut self, t: &Binder<'tcx, T>) -> Self::Result { self.index += 1; let res = t.super_visit_with(self); self.index -= 1; res } } ty.visit_with(&mut V { index: 0, f }) } pub struct AdtVariantInfo { pub ind: usize, pub size: u64, /// (ind, size) pub fields_size: Vec<(usize, u64)>, } impl AdtVariantInfo { /// Returns ADT variants ordered by size pub fn new<'tcx>(cx: &LateContext<'tcx>, adt: AdtDef<'tcx>, subst: &'tcx List>) -> Vec { let mut variants_size = adt .variants() .iter() .enumerate() .map(|(i, variant)| { let mut fields_size = variant .fields .iter() .enumerate() .map(|(i, f)| (i, approx_ty_size(cx, f.ty(cx.tcx, subst)))) .collect::>(); fields_size.sort_by(|(_, a_size), (_, b_size)| (a_size.cmp(b_size))); Self { ind: i, size: fields_size.iter().map(|(_, size)| size).sum(), fields_size, } }) .collect::>(); variants_size.sort_by(|a, b| (b.size.cmp(&a.size))); variants_size } } /// Gets the struct or enum variant from the given `Res` pub fn adt_and_variant_of_res<'tcx>(cx: &LateContext<'tcx>, res: Res) -> Option<(AdtDef<'tcx>, &'tcx VariantDef)> { match res { Res::Def(DefKind::Struct, id) => { let adt = cx.tcx.adt_def(id); Some((adt, adt.non_enum_variant())) }, Res::Def(DefKind::Variant, id) => { let adt = cx.tcx.adt_def(cx.tcx.parent(id)); Some((adt, adt.variant_with_id(id))) }, Res::Def(DefKind::Ctor(CtorOf::Struct, _), id) => { let adt = cx.tcx.adt_def(cx.tcx.parent(id)); Some((adt, adt.non_enum_variant())) }, Res::Def(DefKind::Ctor(CtorOf::Variant, _), id) => { let var_id = cx.tcx.parent(id); let adt = cx.tcx.adt_def(cx.tcx.parent(var_id)); Some((adt, adt.variant_with_id(var_id))) }, Res::SelfCtor(id) => { let adt = cx.tcx.type_of(id).instantiate_identity().ty_adt_def().unwrap(); Some((adt, adt.non_enum_variant())) }, _ => None, } } /// Comes up with an "at least" guesstimate for the type's size, not taking into /// account the layout of type parameters. pub fn approx_ty_size<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> u64 { use rustc_middle::ty::layout::LayoutOf; if !is_normalizable(cx, cx.param_env, ty) { return 0; } match (cx.layout_of(ty).map(|layout| layout.size.bytes()), ty.kind()) { (Ok(size), _) => size, (Err(_), ty::Tuple(list)) => list.iter().map(|t| approx_ty_size(cx, t)).sum(), (Err(_), ty::Array(t, n)) => { n.try_eval_target_usize(cx.tcx, cx.param_env).unwrap_or_default() * approx_ty_size(cx, *t) }, (Err(_), ty::Adt(def, subst)) if def.is_struct() => def .variants() .iter() .map(|v| { v.fields .iter() .map(|field| approx_ty_size(cx, field.ty(cx.tcx, subst))) .sum::() }) .sum(), (Err(_), ty::Adt(def, subst)) if def.is_enum() => def .variants() .iter() .map(|v| { v.fields .iter() .map(|field| approx_ty_size(cx, field.ty(cx.tcx, subst))) .sum::() }) .max() .unwrap_or_default(), (Err(_), ty::Adt(def, subst)) if def.is_union() => def .variants() .iter() .map(|v| { v.fields .iter() .map(|field| approx_ty_size(cx, field.ty(cx.tcx, subst))) .max() .unwrap_or_default() }) .max() .unwrap_or_default(), (Err(_), _) => 0, } } /// Asserts that the given arguments match the generic parameters of the given item. #[allow(dead_code)] fn assert_generic_args_match<'tcx>(tcx: TyCtxt<'tcx>, did: DefId, args: &[GenericArg<'tcx>]) { let g = tcx.generics_of(did); let parent = g.parent.map(|did| tcx.generics_of(did)); let count = g.parent_count + g.params.len(); let params = parent .map_or([].as_slice(), |p| p.params.as_slice()) .iter() .chain(&g.params) .map(|x| &x.kind); assert!( count == args.len(), "wrong number of arguments for `{did:?}`: expected `{count}`, found {}\n\ note: the expected arguments are: `[{}]`\n\ the given arguments are: `{args:#?}`", args.len(), params.clone().map(GenericParamDefKind::descr).format(", "), ); if let Some((idx, (param, arg))) = params .clone() .zip(args.iter().map(|&x| x.unpack())) .enumerate() .find(|(_, (param, arg))| match (param, arg) { (GenericParamDefKind::Lifetime, GenericArgKind::Lifetime(_)) | (GenericParamDefKind::Type { .. }, GenericArgKind::Type(_)) | (GenericParamDefKind::Const { .. }, GenericArgKind::Const(_)) => false, ( GenericParamDefKind::Lifetime | GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. }, _, ) => true, }) { panic!( "incorrect argument for `{did:?}` at index `{idx}`: expected a {}, found `{arg:?}`\n\ note: the expected arguments are `[{}]`\n\ the given arguments are `{args:#?}`", param.descr(), params.clone().map(GenericParamDefKind::descr).format(", "), ); } } /// Returns whether `ty` is never-like; i.e., `!` (never) or an enum with zero variants. pub fn is_never_like(ty: Ty<'_>) -> bool { ty.is_never() || (ty.is_enum() && ty.ty_adt_def().is_some_and(|def| def.variants().is_empty())) } /// Makes the projection type for the named associated type in the given impl or trait impl. /// /// This function is for associated types which are "known" to exist, and as such, will only return /// `None` when debug assertions are disabled in order to prevent ICE's. With debug assertions /// enabled this will check that the named associated type exists, the correct number of /// arguments are given, and that the correct kinds of arguments are given (lifetime, /// constant or type). This will not check if type normalization would succeed. pub fn make_projection<'tcx>( tcx: TyCtxt<'tcx>, container_id: DefId, assoc_ty: Symbol, args: impl IntoIterator>>, ) -> Option> { fn helper<'tcx>( tcx: TyCtxt<'tcx>, container_id: DefId, assoc_ty: Symbol, args: GenericArgsRef<'tcx>, ) -> Option> { let Some(assoc_item) = tcx.associated_items(container_id).find_by_name_and_kind( tcx, Ident::with_dummy_span(assoc_ty), AssocKind::Type, container_id, ) else { debug_assert!(false, "type `{assoc_ty}` not found in `{container_id:?}`"); return None; }; #[cfg(debug_assertions)] assert_generic_args_match(tcx, assoc_item.def_id, args); Some(ty::AliasTy::new(tcx, assoc_item.def_id, args)) } helper( tcx, container_id, assoc_ty, tcx.mk_args_from_iter(args.into_iter().map(Into::into)), ) } /// Normalizes the named associated type in the given impl or trait impl. /// /// This function is for associated types which are "known" to be valid with the given /// arguments, and as such, will only return `None` when debug assertions are disabled in order /// to prevent ICE's. With debug assertions enabled this will check that type normalization /// succeeds as well as everything checked by `make_projection`. pub fn make_normalized_projection<'tcx>( tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, container_id: DefId, assoc_ty: Symbol, args: impl IntoIterator>>, ) -> Option> { fn helper<'tcx>(tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, ty: AliasTy<'tcx>) -> Option> { #[cfg(debug_assertions)] if let Some((i, arg)) = ty .args .iter() .enumerate() .find(|(_, arg)| arg.has_escaping_bound_vars()) { debug_assert!( false, "args contain late-bound region at index `{i}` which can't be normalized.\n\ use `TyCtxt::instantiate_bound_regions_with_erased`\n\ note: arg is `{arg:#?}`", ); return None; } match tcx.try_normalize_erasing_regions(param_env, Ty::new_projection(tcx, ty.def_id, ty.args)) { Ok(ty) => Some(ty), Err(e) => { debug_assert!(false, "failed to normalize type `{ty}`: {e:#?}"); None }, } } helper(tcx, param_env, make_projection(tcx, container_id, assoc_ty, args)?) } /// Check if given type has inner mutability such as [`std::cell::Cell`] or [`std::cell::RefCell`] /// etc. pub fn is_interior_mut_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { match *ty.kind() { ty::Ref(_, inner_ty, mutbl) => mutbl == Mutability::Mut || is_interior_mut_ty(cx, inner_ty), ty::Slice(inner_ty) => is_interior_mut_ty(cx, inner_ty), ty::Array(inner_ty, size) => { size.try_eval_target_usize(cx.tcx, cx.param_env) .map_or(true, |u| u != 0) && is_interior_mut_ty(cx, inner_ty) }, ty::Tuple(fields) => fields.iter().any(|ty| is_interior_mut_ty(cx, ty)), ty::Adt(def, args) => { // Special case for collections in `std` who's impl of `Hash` or `Ord` delegates to // that of their type parameters. Note: we don't include `HashSet` and `HashMap` // because they have no impl for `Hash` or `Ord`. let def_id = def.did(); let is_std_collection = [ sym::Option, sym::Result, sym::LinkedList, sym::Vec, sym::VecDeque, sym::BTreeMap, sym::BTreeSet, sym::Rc, sym::Arc, ] .iter() .any(|diag_item| cx.tcx.is_diagnostic_item(*diag_item, def_id)); let is_box = Some(def_id) == cx.tcx.lang_items().owned_box(); if is_std_collection || is_box { // The type is mutable if any of its type parameters are args.types().any(|ty| is_interior_mut_ty(cx, ty)) } else { !ty.has_escaping_bound_vars() && cx.tcx.layout_of(cx.param_env.and(ty)).is_ok() && !ty.is_freeze(cx.tcx, cx.param_env) } }, _ => false, } } pub fn make_normalized_projection_with_regions<'tcx>( tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, container_id: DefId, assoc_ty: Symbol, args: impl IntoIterator>>, ) -> Option> { fn helper<'tcx>(tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, ty: AliasTy<'tcx>) -> Option> { #[cfg(debug_assertions)] if let Some((i, arg)) = ty .args .iter() .enumerate() .find(|(_, arg)| arg.has_escaping_bound_vars()) { debug_assert!( false, "args contain late-bound region at index `{i}` which can't be normalized.\n\ use `TyCtxt::instantiate_bound_regions_with_erased`\n\ note: arg is `{arg:#?}`", ); return None; } let cause = rustc_middle::traits::ObligationCause::dummy(); match tcx .infer_ctxt() .build() .at(&cause, param_env) .query_normalize(Ty::new_projection(tcx, ty.def_id, ty.args)) { Ok(ty) => Some(ty.value), Err(e) => { debug_assert!(false, "failed to normalize type `{ty}`: {e:#?}"); None }, } } helper(tcx, param_env, make_projection(tcx, container_id, assoc_ty, args)?) } pub fn normalize_with_regions<'tcx>(tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { let cause = rustc_middle::traits::ObligationCause::dummy(); match tcx.infer_ctxt().build().at(&cause, param_env).query_normalize(ty) { Ok(ty) => ty.value, Err(_) => ty, } } /// Checks if the type is `core::mem::ManuallyDrop<_>` pub fn is_manually_drop(ty: Ty<'_>) -> bool { ty.ty_adt_def().map_or(false, AdtDef::is_manually_drop) }