//! HIR walker for walking the contents of nodes. //! //! **For an overview of the visitor strategy, see the docs on the //! `super::itemlikevisit::ItemLikeVisitor` trait.** //! //! If you have decided to use this visitor, here are some general //! notes on how to do it: //! //! Each overridden visit method has full control over what //! happens with its node, it can do its own traversal of the node's children, //! call `intravisit::walk_*` to apply the default traversal algorithm, or prevent //! deeper traversal by doing nothing. //! //! When visiting the HIR, the contents of nested items are NOT visited //! by default. This is different from the AST visitor, which does a deep walk. //! Hence this module is called `intravisit`; see the method `visit_nested_item` //! for more details. //! //! Note: it is an important invariant that the default visitor walks //! the body of a function in "execution order" - more concretely, if //! we consider the reverse post-order (RPO) of the CFG implied by the HIR, //! then a pre-order traversal of the HIR is consistent with the CFG RPO //! on the *initial CFG point* of each HIR node, while a post-order traversal //! of the HIR is consistent with the CFG RPO on each *final CFG point* of //! each CFG node. //! //! One thing that follows is that if HIR node A always starts/ends executing //! before HIR node B, then A appears in traversal pre/postorder before B, //! respectively. (This follows from RPO respecting CFG domination). //! //! This order consistency is required in a few places in rustc, for //! example generator inference, and possibly also HIR borrowck. use syntax::ast::{NodeId, CRATE_NODE_ID, Ident, Name, Attribute}; use syntax_pos::Span; use crate::hir::*; use crate::hir::def::Def; use crate::hir::map::Map; use super::itemlikevisit::DeepVisitor; #[derive(Copy, Clone)] pub enum FnKind<'a> { /// `#[xxx] pub async/const/extern "Abi" fn foo()` ItemFn(Ident, &'a Generics, FnHeader, &'a Visibility, &'a [Attribute]), /// `fn foo(&self)` Method(Ident, &'a MethodSig, Option<&'a Visibility>, &'a [Attribute]), /// `|x, y| {}` Closure(&'a [Attribute]), } impl<'a> FnKind<'a> { pub fn attrs(&self) -> &'a [Attribute] { match *self { FnKind::ItemFn(.., attrs) => attrs, FnKind::Method(.., attrs) => attrs, FnKind::Closure(attrs) => attrs, } } } /// Specifies what nested things a visitor wants to visit. The most /// common choice is `OnlyBodies`, which will cause the visitor to /// visit fn bodies for fns that it encounters, but skip over nested /// item-like things. /// /// See the comments on `ItemLikeVisitor` for more details on the overall /// visit strategy. pub enum NestedVisitorMap<'this, 'tcx: 'this> { /// Do not visit any nested things. When you add a new /// "non-nested" thing, you will want to audit such uses to see if /// they remain valid. /// /// Use this if you are only walking some particular kind of tree /// (i.e., a type, or fn signature) and you don't want to thread a /// HIR map around. None, /// Do not visit nested item-like things, but visit nested things /// that are inside of an item-like. /// /// **This is the most common choice.** A very common pattern is /// to use `visit_all_item_likes()` as an outer loop, /// and to have the visitor that visits the contents of each item /// using this setting. OnlyBodies(&'this Map<'tcx>), /// Visit all nested things, including item-likes. /// /// **This is an unusual choice.** It is used when you want to /// process everything within their lexical context. Typically you /// kick off the visit by doing `walk_krate()`. All(&'this Map<'tcx>), } impl<'this, 'tcx> NestedVisitorMap<'this, 'tcx> { /// Returns the map to use for an "intra item-like" thing (if any). /// e.g., function body. pub fn intra(self) -> Option<&'this Map<'tcx>> { match self { NestedVisitorMap::None => None, NestedVisitorMap::OnlyBodies(map) => Some(map), NestedVisitorMap::All(map) => Some(map), } } /// Returns the map to use for an "item-like" thing (if any). /// e.g., item, impl-item. pub fn inter(self) -> Option<&'this Map<'tcx>> { match self { NestedVisitorMap::None => None, NestedVisitorMap::OnlyBodies(_) => None, NestedVisitorMap::All(map) => Some(map), } } } /// Each method of the Visitor trait is a hook to be potentially /// overridden. Each method's default implementation recursively visits /// the substructure of the input via the corresponding `walk` method; /// e.g., the `visit_mod` method by default calls `intravisit::walk_mod`. /// /// Note that this visitor does NOT visit nested items by default /// (this is why the module is called `intravisit`, to distinguish it /// from the AST's `visit` module, which acts differently). If you /// simply want to visit all items in the crate in some order, you /// should call `Crate::visit_all_items`. Otherwise, see the comment /// on `visit_nested_item` for details on how to visit nested items. /// /// If you want to ensure that your code handles every variant /// explicitly, you need to override each method. (And you also need /// to monitor future changes to `Visitor` in case a new method with a /// new default implementation gets introduced.) pub trait Visitor<'v> : Sized { /////////////////////////////////////////////////////////////////////////// // Nested items. /// The default versions of the `visit_nested_XXX` routines invoke /// this method to get a map to use. By selecting an enum variant, /// you control which kinds of nested HIR are visited; see /// `NestedVisitorMap` for details. By "nested HIR", we are /// referring to bits of HIR that are not directly embedded within /// one another but rather indirectly, through a table in the /// crate. This is done to control dependencies during incremental /// compilation: the non-inline bits of HIR can be tracked and /// hashed separately. /// /// **If for some reason you want the nested behavior, but don't /// have a `Map` at your disposal:** then you should override the /// `visit_nested_XXX` methods, and override this method to /// `panic!()`. This way, if a new `visit_nested_XXX` variant is /// added in the future, we will see the panic in your code and /// fix it appropriately. fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'v>; /// Invoked when a nested item is encountered. By default does /// nothing unless you override `nested_visit_map` to return /// `Some(_)`, in which case it will walk the item. **You probably /// don't want to override this method** -- instead, override /// `nested_visit_map` or use the "shallow" or "deep" visit /// patterns described on `itemlikevisit::ItemLikeVisitor`. The only /// reason to override this method is if you want a nested pattern /// but cannot supply a `Map`; see `nested_visit_map` for advice. #[allow(unused_variables)] fn visit_nested_item(&mut self, id: ItemId) { let opt_item = self.nested_visit_map().inter().map(|map| map.expect_item(id.id)); if let Some(item) = opt_item { self.visit_item(item); } } /// Like `visit_nested_item()`, but for trait items. See /// `visit_nested_item()` for advice on when to override this /// method. #[allow(unused_variables)] fn visit_nested_trait_item(&mut self, id: TraitItemId) { let opt_item = self.nested_visit_map().inter().map(|map| map.trait_item(id)); if let Some(item) = opt_item { self.visit_trait_item(item); } } /// Like `visit_nested_item()`, but for impl items. See /// `visit_nested_item()` for advice on when to override this /// method. #[allow(unused_variables)] fn visit_nested_impl_item(&mut self, id: ImplItemId) { let opt_item = self.nested_visit_map().inter().map(|map| map.impl_item(id)); if let Some(item) = opt_item { self.visit_impl_item(item); } } /// Invoked to visit the body of a function, method or closure. Like /// visit_nested_item, does nothing by default unless you override /// `nested_visit_map` to return `Some(_)`, in which case it will walk the /// body. fn visit_nested_body(&mut self, id: BodyId) { let opt_body = self.nested_visit_map().intra().map(|map| map.body(id)); if let Some(body) = opt_body { self.visit_body(body); } } /// Visit the top-level item and (optionally) nested items / impl items. See /// `visit_nested_item` for details. fn visit_item(&mut self, i: &'v Item) { walk_item(self, i) } fn visit_body(&mut self, b: &'v Body) { walk_body(self, b); } /// When invoking `visit_all_item_likes()`, you need to supply an /// item-like visitor. This method converts a "intra-visit" /// visitor into an item-like visitor that walks the entire tree. /// If you use this, you probably don't want to process the /// contents of nested item-like things, since the outer loop will /// visit them as well. fn as_deep_visitor<'s>(&'s mut self) -> DeepVisitor<'s, Self> { DeepVisitor::new(self) } /////////////////////////////////////////////////////////////////////////// fn visit_id(&mut self, _node_id: NodeId) { // Nothing to do. } fn visit_def_mention(&mut self, _def: Def) { // Nothing to do. } fn visit_name(&mut self, _span: Span, _name: Name) { // Nothing to do. } fn visit_ident(&mut self, ident: Ident) { walk_ident(self, ident) } fn visit_mod(&mut self, m: &'v Mod, _s: Span, n: NodeId) { walk_mod(self, m, n) } fn visit_foreign_item(&mut self, i: &'v ForeignItem) { walk_foreign_item(self, i) } fn visit_local(&mut self, l: &'v Local) { walk_local(self, l) } fn visit_block(&mut self, b: &'v Block) { walk_block(self, b) } fn visit_stmt(&mut self, s: &'v Stmt) { walk_stmt(self, s) } fn visit_arm(&mut self, a: &'v Arm) { walk_arm(self, a) } fn visit_pat(&mut self, p: &'v Pat) { walk_pat(self, p) } fn visit_anon_const(&mut self, c: &'v AnonConst) { walk_anon_const(self, c) } fn visit_expr(&mut self, ex: &'v Expr) { walk_expr(self, ex) } fn visit_ty(&mut self, t: &'v Ty) { walk_ty(self, t) } fn visit_generic_param(&mut self, p: &'v GenericParam) { walk_generic_param(self, p) } fn visit_generics(&mut self, g: &'v Generics) { walk_generics(self, g) } fn visit_where_predicate(&mut self, predicate: &'v WherePredicate) { walk_where_predicate(self, predicate) } fn visit_fn_decl(&mut self, fd: &'v FnDecl) { walk_fn_decl(self, fd) } fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v FnDecl, b: BodyId, s: Span, id: NodeId) { walk_fn(self, fk, fd, b, s, id) } fn visit_use(&mut self, path: &'v Path, id: NodeId, hir_id: HirId) { walk_use(self, path, id, hir_id) } fn visit_trait_item(&mut self, ti: &'v TraitItem) { walk_trait_item(self, ti) } fn visit_trait_item_ref(&mut self, ii: &'v TraitItemRef) { walk_trait_item_ref(self, ii) } fn visit_impl_item(&mut self, ii: &'v ImplItem) { walk_impl_item(self, ii) } fn visit_impl_item_ref(&mut self, ii: &'v ImplItemRef) { walk_impl_item_ref(self, ii) } fn visit_trait_ref(&mut self, t: &'v TraitRef) { walk_trait_ref(self, t) } fn visit_param_bound(&mut self, bounds: &'v GenericBound) { walk_param_bound(self, bounds) } fn visit_poly_trait_ref(&mut self, t: &'v PolyTraitRef, m: TraitBoundModifier) { walk_poly_trait_ref(self, t, m) } fn visit_variant_data(&mut self, s: &'v VariantData, _: Name, _: &'v Generics, _parent_id: NodeId, _: Span) { walk_struct_def(self, s) } fn visit_struct_field(&mut self, s: &'v StructField) { walk_struct_field(self, s) } fn visit_enum_def(&mut self, enum_definition: &'v EnumDef, generics: &'v Generics, item_id: NodeId, _: Span) { walk_enum_def(self, enum_definition, generics, item_id) } fn visit_variant(&mut self, v: &'v Variant, g: &'v Generics, item_id: NodeId) { walk_variant(self, v, g, item_id) } fn visit_label(&mut self, label: &'v Label) { walk_label(self, label) } fn visit_generic_arg(&mut self, generic_arg: &'v GenericArg) { match generic_arg { GenericArg::Lifetime(lt) => self.visit_lifetime(lt), GenericArg::Type(ty) => self.visit_ty(ty), } } fn visit_lifetime(&mut self, lifetime: &'v Lifetime) { walk_lifetime(self, lifetime) } fn visit_qpath(&mut self, qpath: &'v QPath, id: HirId, span: Span) { walk_qpath(self, qpath, id, span) } fn visit_path(&mut self, path: &'v Path, _id: HirId) { walk_path(self, path) } fn visit_path_segment(&mut self, path_span: Span, path_segment: &'v PathSegment) { walk_path_segment(self, path_span, path_segment) } fn visit_generic_args(&mut self, path_span: Span, generic_args: &'v GenericArgs) { walk_generic_args(self, path_span, generic_args) } fn visit_assoc_type_binding(&mut self, type_binding: &'v TypeBinding) { walk_assoc_type_binding(self, type_binding) } fn visit_attribute(&mut self, _attr: &'v Attribute) { } fn visit_macro_def(&mut self, macro_def: &'v MacroDef) { walk_macro_def(self, macro_def) } fn visit_vis(&mut self, vis: &'v Visibility) { walk_vis(self, vis) } fn visit_associated_item_kind(&mut self, kind: &'v AssociatedItemKind) { walk_associated_item_kind(self, kind); } fn visit_defaultness(&mut self, defaultness: &'v Defaultness) { walk_defaultness(self, defaultness); } } /// Walks the contents of a crate. See also `Crate::visit_all_items`. pub fn walk_crate<'v, V: Visitor<'v>>(visitor: &mut V, krate: &'v Crate) { visitor.visit_mod(&krate.module, krate.span, CRATE_NODE_ID); walk_list!(visitor, visit_attribute, &krate.attrs); walk_list!(visitor, visit_macro_def, &krate.exported_macros); } pub fn walk_macro_def<'v, V: Visitor<'v>>(visitor: &mut V, macro_def: &'v MacroDef) { visitor.visit_id(macro_def.id); visitor.visit_name(macro_def.span, macro_def.name); walk_list!(visitor, visit_attribute, ¯o_def.attrs); } pub fn walk_mod<'v, V: Visitor<'v>>(visitor: &mut V, module: &'v Mod, mod_node_id: NodeId) { visitor.visit_id(mod_node_id); for &item_id in &module.item_ids { visitor.visit_nested_item(item_id); } } pub fn walk_body<'v, V: Visitor<'v>>(visitor: &mut V, body: &'v Body) { for argument in &body.arguments { visitor.visit_id(argument.id); visitor.visit_pat(&argument.pat); } visitor.visit_expr(&body.value); } pub fn walk_local<'v, V: Visitor<'v>>(visitor: &mut V, local: &'v Local) { // Intentionally visiting the expr first - the initialization expr // dominates the local's definition. walk_list!(visitor, visit_expr, &local.init); walk_list!(visitor, visit_attribute, local.attrs.iter()); visitor.visit_id(local.id); visitor.visit_pat(&local.pat); walk_list!(visitor, visit_ty, &local.ty); } pub fn walk_ident<'v, V: Visitor<'v>>(visitor: &mut V, ident: Ident) { visitor.visit_name(ident.span, ident.name); } pub fn walk_label<'v, V: Visitor<'v>>(visitor: &mut V, label: &'v Label) { visitor.visit_ident(label.ident); } pub fn walk_lifetime<'v, V: Visitor<'v>>(visitor: &mut V, lifetime: &'v Lifetime) { visitor.visit_id(lifetime.id); match lifetime.name { LifetimeName::Param(ParamName::Plain(ident)) => { visitor.visit_ident(ident); } LifetimeName::Param(ParamName::Fresh(_)) | LifetimeName::Param(ParamName::Error) | LifetimeName::Static | LifetimeName::Error | LifetimeName::Implicit | LifetimeName::Underscore => {} } } pub fn walk_poly_trait_ref<'v, V>(visitor: &mut V, trait_ref: &'v PolyTraitRef, _modifier: TraitBoundModifier) where V: Visitor<'v> { walk_list!(visitor, visit_generic_param, &trait_ref.bound_generic_params); visitor.visit_trait_ref(&trait_ref.trait_ref); } pub fn walk_trait_ref<'v, V>(visitor: &mut V, trait_ref: &'v TraitRef) where V: Visitor<'v> { visitor.visit_id(trait_ref.ref_id); visitor.visit_path(&trait_ref.path, trait_ref.hir_ref_id) } pub fn walk_item<'v, V: Visitor<'v>>(visitor: &mut V, item: &'v Item) { visitor.visit_vis(&item.vis); visitor.visit_ident(item.ident); match item.node { ItemKind::ExternCrate(orig_name) => { visitor.visit_id(item.id); if let Some(orig_name) = orig_name { visitor.visit_name(item.span, orig_name); } } ItemKind::Use(ref path, _) => { visitor.visit_use(path, item.id, item.hir_id); } ItemKind::Static(ref typ, _, body) | ItemKind::Const(ref typ, body) => { visitor.visit_id(item.id); visitor.visit_ty(typ); visitor.visit_nested_body(body); } ItemKind::Fn(ref declaration, header, ref generics, body_id) => { visitor.visit_fn(FnKind::ItemFn(item.ident, generics, header, &item.vis, &item.attrs), declaration, body_id, item.span, item.id) } ItemKind::Mod(ref module) => { // `visit_mod()` takes care of visiting the `Item`'s `NodeId`. visitor.visit_mod(module, item.span, item.id) } ItemKind::ForeignMod(ref foreign_module) => { visitor.visit_id(item.id); walk_list!(visitor, visit_foreign_item, &foreign_module.items); } ItemKind::GlobalAsm(_) => { visitor.visit_id(item.id); } ItemKind::Ty(ref typ, ref type_parameters) => { visitor.visit_id(item.id); visitor.visit_ty(typ); visitor.visit_generics(type_parameters) } ItemKind::Existential(ExistTy {ref generics, ref bounds, impl_trait_fn}) => { visitor.visit_id(item.id); walk_generics(visitor, generics); walk_list!(visitor, visit_param_bound, bounds); if let Some(impl_trait_fn) = impl_trait_fn { visitor.visit_def_mention(Def::Fn(impl_trait_fn)) } } ItemKind::Enum(ref enum_definition, ref type_parameters) => { visitor.visit_generics(type_parameters); // `visit_enum_def()` takes care of visiting the `Item`'s `NodeId`. visitor.visit_enum_def(enum_definition, type_parameters, item.id, item.span) } ItemKind::Impl( .., ref type_parameters, ref opt_trait_reference, ref typ, ref impl_item_refs ) => { visitor.visit_id(item.id); visitor.visit_generics(type_parameters); walk_list!(visitor, visit_trait_ref, opt_trait_reference); visitor.visit_ty(typ); walk_list!(visitor, visit_impl_item_ref, impl_item_refs); } ItemKind::Struct(ref struct_definition, ref generics) | ItemKind::Union(ref struct_definition, ref generics) => { visitor.visit_generics(generics); visitor.visit_id(item.id); visitor.visit_variant_data(struct_definition, item.ident.name, generics, item.id, item.span); } ItemKind::Trait(.., ref generics, ref bounds, ref trait_item_refs) => { visitor.visit_id(item.id); visitor.visit_generics(generics); walk_list!(visitor, visit_param_bound, bounds); walk_list!(visitor, visit_trait_item_ref, trait_item_refs); } ItemKind::TraitAlias(ref generics, ref bounds) => { visitor.visit_id(item.id); visitor.visit_generics(generics); walk_list!(visitor, visit_param_bound, bounds); } } walk_list!(visitor, visit_attribute, &item.attrs); } pub fn walk_use<'v, V: Visitor<'v>>(visitor: &mut V, path: &'v Path, item_id: NodeId, hir_id: HirId) { visitor.visit_id(item_id); visitor.visit_path(path, hir_id); } pub fn walk_enum_def<'v, V: Visitor<'v>>(visitor: &mut V, enum_definition: &'v EnumDef, generics: &'v Generics, item_id: NodeId) { visitor.visit_id(item_id); walk_list!(visitor, visit_variant, &enum_definition.variants, generics, item_id); } pub fn walk_variant<'v, V: Visitor<'v>>(visitor: &mut V, variant: &'v Variant, generics: &'v Generics, parent_item_id: NodeId) { visitor.visit_ident(variant.node.ident); visitor.visit_variant_data(&variant.node.data, variant.node.ident.name, generics, parent_item_id, variant.span); walk_list!(visitor, visit_anon_const, &variant.node.disr_expr); walk_list!(visitor, visit_attribute, &variant.node.attrs); } pub fn walk_ty<'v, V: Visitor<'v>>(visitor: &mut V, typ: &'v Ty) { visitor.visit_id(typ.id); match typ.node { TyKind::Slice(ref ty) => { visitor.visit_ty(ty) } TyKind::Ptr(ref mutable_type) => { visitor.visit_ty(&mutable_type.ty) } TyKind::Rptr(ref lifetime, ref mutable_type) => { visitor.visit_lifetime(lifetime); visitor.visit_ty(&mutable_type.ty) } TyKind::Never => {}, TyKind::Tup(ref tuple_element_types) => { walk_list!(visitor, visit_ty, tuple_element_types); } TyKind::BareFn(ref function_declaration) => { walk_list!(visitor, visit_generic_param, &function_declaration.generic_params); visitor.visit_fn_decl(&function_declaration.decl); } TyKind::Path(ref qpath) => { visitor.visit_qpath(qpath, typ.hir_id, typ.span); } TyKind::Def(item_id, ref lifetimes) => { visitor.visit_nested_item(item_id); walk_list!(visitor, visit_generic_arg, lifetimes); } TyKind::Array(ref ty, ref length) => { visitor.visit_ty(ty); visitor.visit_anon_const(length) } TyKind::TraitObject(ref bounds, ref lifetime) => { for bound in bounds { visitor.visit_poly_trait_ref(bound, TraitBoundModifier::None); } visitor.visit_lifetime(lifetime); } TyKind::Typeof(ref expression) => { visitor.visit_anon_const(expression) } TyKind::Infer | TyKind::Err => {} } } pub fn walk_qpath<'v, V: Visitor<'v>>(visitor: &mut V, qpath: &'v QPath, id: HirId, span: Span) { match *qpath { QPath::Resolved(ref maybe_qself, ref path) => { if let Some(ref qself) = *maybe_qself { visitor.visit_ty(qself); } visitor.visit_path(path, id) } QPath::TypeRelative(ref qself, ref segment) => { visitor.visit_ty(qself); visitor.visit_path_segment(span, segment); } } } pub fn walk_path<'v, V: Visitor<'v>>(visitor: &mut V, path: &'v Path) { visitor.visit_def_mention(path.def); for segment in &path.segments { visitor.visit_path_segment(path.span, segment); } } pub fn walk_path_segment<'v, V: Visitor<'v>>(visitor: &mut V, path_span: Span, segment: &'v PathSegment) { visitor.visit_ident(segment.ident); if let Some(id) = segment.id { visitor.visit_id(id); } if let Some(ref args) = segment.args { visitor.visit_generic_args(path_span, args); } } pub fn walk_generic_args<'v, V: Visitor<'v>>(visitor: &mut V, _path_span: Span, generic_args: &'v GenericArgs) { walk_list!(visitor, visit_generic_arg, &generic_args.args); walk_list!(visitor, visit_assoc_type_binding, &generic_args.bindings); } pub fn walk_assoc_type_binding<'v, V: Visitor<'v>>(visitor: &mut V, type_binding: &'v TypeBinding) { visitor.visit_id(type_binding.id); visitor.visit_ident(type_binding.ident); visitor.visit_ty(&type_binding.ty); } pub fn walk_pat<'v, V: Visitor<'v>>(visitor: &mut V, pattern: &'v Pat) { visitor.visit_id(pattern.id); match pattern.node { PatKind::TupleStruct(ref qpath, ref children, _) => { visitor.visit_qpath(qpath, pattern.hir_id, pattern.span); walk_list!(visitor, visit_pat, children); } PatKind::Path(ref qpath) => { visitor.visit_qpath(qpath, pattern.hir_id, pattern.span); } PatKind::Struct(ref qpath, ref fields, _) => { visitor.visit_qpath(qpath, pattern.hir_id, pattern.span); for field in fields { visitor.visit_id(field.node.id); visitor.visit_ident(field.node.ident); visitor.visit_pat(&field.node.pat) } } PatKind::Tuple(ref tuple_elements, _) => { walk_list!(visitor, visit_pat, tuple_elements); } PatKind::Box(ref subpattern) | PatKind::Ref(ref subpattern, _) => { visitor.visit_pat(subpattern) } PatKind::Binding(_, canonical_id, _hir_id, ident, ref optional_subpattern) => { visitor.visit_def_mention(Def::Local(canonical_id)); visitor.visit_ident(ident); walk_list!(visitor, visit_pat, optional_subpattern); } PatKind::Lit(ref expression) => visitor.visit_expr(expression), PatKind::Range(ref lower_bound, ref upper_bound, _) => { visitor.visit_expr(lower_bound); visitor.visit_expr(upper_bound) } PatKind::Wild => (), PatKind::Slice(ref prepatterns, ref slice_pattern, ref postpatterns) => { walk_list!(visitor, visit_pat, prepatterns); walk_list!(visitor, visit_pat, slice_pattern); walk_list!(visitor, visit_pat, postpatterns); } } } pub fn walk_foreign_item<'v, V: Visitor<'v>>(visitor: &mut V, foreign_item: &'v ForeignItem) { visitor.visit_id(foreign_item.id); visitor.visit_vis(&foreign_item.vis); visitor.visit_ident(foreign_item.ident); match foreign_item.node { ForeignItemKind::Fn(ref function_declaration, ref param_names, ref generics) => { visitor.visit_generics(generics); visitor.visit_fn_decl(function_declaration); for ¶m_name in param_names { visitor.visit_ident(param_name); } } ForeignItemKind::Static(ref typ, _) => visitor.visit_ty(typ), ForeignItemKind::Type => (), } walk_list!(visitor, visit_attribute, &foreign_item.attrs); } pub fn walk_param_bound<'v, V: Visitor<'v>>(visitor: &mut V, bound: &'v GenericBound) { match *bound { GenericBound::Trait(ref typ, modifier) => { visitor.visit_poly_trait_ref(typ, modifier); } GenericBound::Outlives(ref lifetime) => visitor.visit_lifetime(lifetime), } } pub fn walk_generic_param<'v, V: Visitor<'v>>(visitor: &mut V, param: &'v GenericParam) { visitor.visit_id(param.id); walk_list!(visitor, visit_attribute, ¶m.attrs); match param.name { ParamName::Plain(ident) => visitor.visit_ident(ident), ParamName::Error | ParamName::Fresh(_) => {} } match param.kind { GenericParamKind::Lifetime { .. } => {} GenericParamKind::Type { ref default, .. } => walk_list!(visitor, visit_ty, default), } walk_list!(visitor, visit_param_bound, ¶m.bounds); } pub fn walk_generics<'v, V: Visitor<'v>>(visitor: &mut V, generics: &'v Generics) { walk_list!(visitor, visit_generic_param, &generics.params); visitor.visit_id(generics.where_clause.id); walk_list!(visitor, visit_where_predicate, &generics.where_clause.predicates); } pub fn walk_where_predicate<'v, V: Visitor<'v>>( visitor: &mut V, predicate: &'v WherePredicate) { match predicate { &WherePredicate::BoundPredicate(WhereBoundPredicate{ref bounded_ty, ref bounds, ref bound_generic_params, ..}) => { visitor.visit_ty(bounded_ty); walk_list!(visitor, visit_param_bound, bounds); walk_list!(visitor, visit_generic_param, bound_generic_params); } &WherePredicate::RegionPredicate(WhereRegionPredicate{ref lifetime, ref bounds, ..}) => { visitor.visit_lifetime(lifetime); walk_list!(visitor, visit_param_bound, bounds); } &WherePredicate::EqPredicate(WhereEqPredicate{id, ref lhs_ty, ref rhs_ty, ..}) => { visitor.visit_id(id); visitor.visit_ty(lhs_ty); visitor.visit_ty(rhs_ty); } } } pub fn walk_fn_ret_ty<'v, V: Visitor<'v>>(visitor: &mut V, ret_ty: &'v FunctionRetTy) { if let Return(ref output_ty) = *ret_ty { visitor.visit_ty(output_ty) } } pub fn walk_fn_decl<'v, V: Visitor<'v>>(visitor: &mut V, function_declaration: &'v FnDecl) { for ty in &function_declaration.inputs { visitor.visit_ty(ty) } walk_fn_ret_ty(visitor, &function_declaration.output) } pub fn walk_fn_kind<'v, V: Visitor<'v>>(visitor: &mut V, function_kind: FnKind<'v>) { match function_kind { FnKind::ItemFn(_, generics, ..) => { visitor.visit_generics(generics); } FnKind::Method(..) | FnKind::Closure(_) => {} } } pub fn walk_fn<'v, V: Visitor<'v>>(visitor: &mut V, function_kind: FnKind<'v>, function_declaration: &'v FnDecl, body_id: BodyId, _span: Span, id: NodeId) { visitor.visit_id(id); visitor.visit_fn_decl(function_declaration); walk_fn_kind(visitor, function_kind); visitor.visit_nested_body(body_id) } pub fn walk_trait_item<'v, V: Visitor<'v>>(visitor: &mut V, trait_item: &'v TraitItem) { visitor.visit_ident(trait_item.ident); walk_list!(visitor, visit_attribute, &trait_item.attrs); visitor.visit_generics(&trait_item.generics); match trait_item.node { TraitItemKind::Const(ref ty, default) => { visitor.visit_id(trait_item.id); visitor.visit_ty(ty); walk_list!(visitor, visit_nested_body, default); } TraitItemKind::Method(ref sig, TraitMethod::Required(ref param_names)) => { visitor.visit_id(trait_item.id); visitor.visit_fn_decl(&sig.decl); for ¶m_name in param_names { visitor.visit_ident(param_name); } } TraitItemKind::Method(ref sig, TraitMethod::Provided(body_id)) => { visitor.visit_fn(FnKind::Method(trait_item.ident, sig, None, &trait_item.attrs), &sig.decl, body_id, trait_item.span, trait_item.id); } TraitItemKind::Type(ref bounds, ref default) => { visitor.visit_id(trait_item.id); walk_list!(visitor, visit_param_bound, bounds); walk_list!(visitor, visit_ty, default); } } } pub fn walk_trait_item_ref<'v, V: Visitor<'v>>(visitor: &mut V, trait_item_ref: &'v TraitItemRef) { // N.B., deliberately force a compilation error if/when new fields are added. let TraitItemRef { id, ident, ref kind, span: _, ref defaultness } = *trait_item_ref; visitor.visit_nested_trait_item(id); visitor.visit_ident(ident); visitor.visit_associated_item_kind(kind); visitor.visit_defaultness(defaultness); } pub fn walk_impl_item<'v, V: Visitor<'v>>(visitor: &mut V, impl_item: &'v ImplItem) { // N.B., deliberately force a compilation error if/when new fields are added. let ImplItem { id: _, hir_id: _, ident, ref vis, ref defaultness, ref attrs, ref generics, ref node, span: _, } = *impl_item; visitor.visit_ident(ident); visitor.visit_vis(vis); visitor.visit_defaultness(defaultness); walk_list!(visitor, visit_attribute, attrs); visitor.visit_generics(generics); match *node { ImplItemKind::Const(ref ty, body) => { visitor.visit_id(impl_item.id); visitor.visit_ty(ty); visitor.visit_nested_body(body); } ImplItemKind::Method(ref sig, body_id) => { visitor.visit_fn(FnKind::Method(impl_item.ident, sig, Some(&impl_item.vis), &impl_item.attrs), &sig.decl, body_id, impl_item.span, impl_item.id); } ImplItemKind::Type(ref ty) => { visitor.visit_id(impl_item.id); visitor.visit_ty(ty); } ImplItemKind::Existential(ref bounds) => { visitor.visit_id(impl_item.id); walk_list!(visitor, visit_param_bound, bounds); } } } pub fn walk_impl_item_ref<'v, V: Visitor<'v>>(visitor: &mut V, impl_item_ref: &'v ImplItemRef) { // N.B., deliberately force a compilation error if/when new fields are added. let ImplItemRef { id, ident, ref kind, span: _, ref vis, ref defaultness } = *impl_item_ref; visitor.visit_nested_impl_item(id); visitor.visit_ident(ident); visitor.visit_associated_item_kind(kind); visitor.visit_vis(vis); visitor.visit_defaultness(defaultness); } pub fn walk_struct_def<'v, V: Visitor<'v>>(visitor: &mut V, struct_definition: &'v VariantData) { visitor.visit_id(struct_definition.id()); walk_list!(visitor, visit_struct_field, struct_definition.fields()); } pub fn walk_struct_field<'v, V: Visitor<'v>>(visitor: &mut V, struct_field: &'v StructField) { visitor.visit_id(struct_field.id); visitor.visit_vis(&struct_field.vis); visitor.visit_ident(struct_field.ident); visitor.visit_ty(&struct_field.ty); walk_list!(visitor, visit_attribute, &struct_field.attrs); } pub fn walk_block<'v, V: Visitor<'v>>(visitor: &mut V, block: &'v Block) { visitor.visit_id(block.id); walk_list!(visitor, visit_stmt, &block.stmts); walk_list!(visitor, visit_expr, &block.expr); } pub fn walk_stmt<'v, V: Visitor<'v>>(visitor: &mut V, statement: &'v Stmt) { visitor.visit_id(statement.id); match statement.node { StmtKind::Local(ref local) => visitor.visit_local(local), StmtKind::Item(ref item) => visitor.visit_nested_item(**item), StmtKind::Expr(ref expression) | StmtKind::Semi(ref expression) => { visitor.visit_expr(expression) } } } pub fn walk_anon_const<'v, V: Visitor<'v>>(visitor: &mut V, constant: &'v AnonConst) { visitor.visit_id(constant.id); visitor.visit_nested_body(constant.body); } pub fn walk_expr<'v, V: Visitor<'v>>(visitor: &mut V, expression: &'v Expr) { visitor.visit_id(expression.id); walk_list!(visitor, visit_attribute, expression.attrs.iter()); match expression.node { ExprKind::Box(ref subexpression) => { visitor.visit_expr(subexpression) } ExprKind::Array(ref subexpressions) => { walk_list!(visitor, visit_expr, subexpressions); } ExprKind::Repeat(ref element, ref count) => { visitor.visit_expr(element); visitor.visit_anon_const(count) } ExprKind::Struct(ref qpath, ref fields, ref optional_base) => { visitor.visit_qpath(qpath, expression.hir_id, expression.span); for field in fields { visitor.visit_id(field.id); visitor.visit_ident(field.ident); visitor.visit_expr(&field.expr) } walk_list!(visitor, visit_expr, optional_base); } ExprKind::Tup(ref subexpressions) => { walk_list!(visitor, visit_expr, subexpressions); } ExprKind::Call(ref callee_expression, ref arguments) => { visitor.visit_expr(callee_expression); walk_list!(visitor, visit_expr, arguments); } ExprKind::MethodCall(ref segment, _, ref arguments) => { visitor.visit_path_segment(expression.span, segment); walk_list!(visitor, visit_expr, arguments); } ExprKind::Binary(_, ref left_expression, ref right_expression) => { visitor.visit_expr(left_expression); visitor.visit_expr(right_expression) } ExprKind::AddrOf(_, ref subexpression) | ExprKind::Unary(_, ref subexpression) => { visitor.visit_expr(subexpression) } ExprKind::Lit(_) => {} ExprKind::Cast(ref subexpression, ref typ) | ExprKind::Type(ref subexpression, ref typ) => { visitor.visit_expr(subexpression); visitor.visit_ty(typ) } ExprKind::If(ref head_expression, ref if_block, ref optional_else) => { visitor.visit_expr(head_expression); visitor.visit_expr(if_block); walk_list!(visitor, visit_expr, optional_else); } ExprKind::While(ref subexpression, ref block, ref opt_label) => { walk_list!(visitor, visit_label, opt_label); visitor.visit_expr(subexpression); visitor.visit_block(block); } ExprKind::Loop(ref block, ref opt_label, _) => { walk_list!(visitor, visit_label, opt_label); visitor.visit_block(block); } ExprKind::Match(ref subexpression, ref arms, _) => { visitor.visit_expr(subexpression); walk_list!(visitor, visit_arm, arms); } ExprKind::Closure(_, ref function_declaration, body, _fn_decl_span, _gen) => { visitor.visit_fn(FnKind::Closure(&expression.attrs), function_declaration, body, expression.span, expression.id) } ExprKind::Block(ref block, ref opt_label) => { walk_list!(visitor, visit_label, opt_label); visitor.visit_block(block); } ExprKind::Assign(ref left_hand_expression, ref right_hand_expression) => { visitor.visit_expr(right_hand_expression); visitor.visit_expr(left_hand_expression) } ExprKind::AssignOp(_, ref left_expression, ref right_expression) => { visitor.visit_expr(right_expression); visitor.visit_expr(left_expression) } ExprKind::Field(ref subexpression, ident) => { visitor.visit_expr(subexpression); visitor.visit_ident(ident); } ExprKind::Index(ref main_expression, ref index_expression) => { visitor.visit_expr(main_expression); visitor.visit_expr(index_expression) } ExprKind::Path(ref qpath) => { visitor.visit_qpath(qpath, expression.hir_id, expression.span); } ExprKind::Break(ref destination, ref opt_expr) => { if let Some(ref label) = destination.label { visitor.visit_label(label); if let Ok(node_id) = destination.target_id { visitor.visit_def_mention(Def::Label(node_id)) } } walk_list!(visitor, visit_expr, opt_expr); } ExprKind::Continue(ref destination) => { if let Some(ref label) = destination.label { visitor.visit_label(label); if let Ok(node_id) = destination.target_id { visitor.visit_def_mention(Def::Label(node_id)) } } } ExprKind::Ret(ref optional_expression) => { walk_list!(visitor, visit_expr, optional_expression); } ExprKind::InlineAsm(_, ref outputs, ref inputs) => { for expr in outputs.iter().chain(inputs.iter()) { visitor.visit_expr(expr) } } ExprKind::Yield(ref subexpression) => { visitor.visit_expr(subexpression); } ExprKind::Err => {} } } pub fn walk_arm<'v, V: Visitor<'v>>(visitor: &mut V, arm: &'v Arm) { walk_list!(visitor, visit_pat, &arm.pats); if let Some(ref g) = arm.guard { match g { Guard::If(ref e) => visitor.visit_expr(e), } } visitor.visit_expr(&arm.body); walk_list!(visitor, visit_attribute, &arm.attrs); } pub fn walk_vis<'v, V: Visitor<'v>>(visitor: &mut V, vis: &'v Visibility) { if let VisibilityKind::Restricted { ref path, id, hir_id } = vis.node { visitor.visit_id(id); visitor.visit_path(path, hir_id) } } pub fn walk_associated_item_kind<'v, V: Visitor<'v>>(_: &mut V, _: &'v AssociatedItemKind) { // No visitable content here: this fn exists so you can call it if // the right thing to do, should content be added in the future, // would be to walk it. } pub fn walk_defaultness<'v, V: Visitor<'v>>(_: &mut V, _: &'v Defaultness) { // No visitable content here: this fn exists so you can call it if // the right thing to do, should content be added in the future, // would be to walk it. }