use rustc::lint::*;
use rustc_front::hir::*;
use reexport::*;
use syntax::codemap::{ExpnInfo, Span, ExpnFormat};
use rustc::front::map::Node::*;
use rustc::middle::def_id::DefId;
use rustc::middle::ty;
use std::borrow::Cow;
use syntax::ast::Lit_::*;
use syntax::ast;
use syntax::errors::DiagnosticBuilder;
use syntax::ptr::P;
use consts::constant;
use rustc::session::Session;
use std::str::FromStr;
use std::ops::{Deref, DerefMut};
pub type MethodArgs = HirVec
>;
// module DefPaths for certain structs/enums we check for
pub const BEGIN_UNWIND: [&'static str; 3] = ["std", "rt", "begin_unwind"];
pub const BTREEMAP_PATH: [&'static str; 4] = ["collections", "btree", "map", "BTreeMap"];
pub const CLONE_PATH: [&'static str; 2] = ["Clone", "clone"];
pub const COW_PATH: [&'static str; 3] = ["collections", "borrow", "Cow"];
pub const HASHMAP_PATH: [&'static str; 5] = ["std", "collections", "hash", "map", "HashMap"];
pub const LL_PATH: [&'static str; 3] = ["collections", "linked_list", "LinkedList"];
pub const MUTEX_PATH: [&'static str; 4] = ["std", "sync", "mutex", "Mutex"];
pub const OPEN_OPTIONS_PATH: [&'static str; 3] = ["std", "fs", "OpenOptions"];
pub const OPTION_PATH: [&'static str; 3] = ["core", "option", "Option"];
pub const RESULT_PATH: [&'static str; 3] = ["core", "result", "Result"];
pub const STRING_PATH: [&'static str; 3] = ["collections", "string", "String"];
pub const VEC_PATH: [&'static str; 3] = ["collections", "vec", "Vec"];
/// Produce a nested chain of if-lets and ifs from the patterns:
///
/// if_let_chain! {
/// [
/// let Some(y) = x,
/// y.len() == 2,
/// let Some(z) = y,
/// ],
/// {
/// block
/// }
/// }
///
/// becomes
///
/// if let Some(y) = x {
/// if y.len() == 2 {
/// if let Some(z) = y {
/// block
/// }
/// }
/// }
#[macro_export]
macro_rules! if_let_chain {
([let $pat:pat = $expr:expr, $($tt:tt)+], $block:block) => {
if let $pat = $expr {
if_let_chain!{ [$($tt)+], $block }
}
};
([let $pat:pat = $expr:expr], $block:block) => {
if let $pat = $expr {
$block
}
};
([$expr:expr, $($tt:tt)+], $block:block) => {
if $expr {
if_let_chain!{ [$($tt)+], $block }
}
};
([$expr:expr], $block:block) => {
if $expr {
$block
}
};
}
/// Returns true if the two spans come from differing expansions (i.e. one is from a macro and one isn't)
pub fn differing_macro_contexts(sp1: Span, sp2: Span) -> bool {
sp1.expn_id != sp2.expn_id
}
/// returns true if this expn_info was expanded by any macro
pub fn in_macro(cx: &T, span: Span) -> bool {
cx.sess().codemap().with_expn_info(span.expn_id, |info| info.is_some())
}
/// returns true if the macro that expanded the crate was outside of
/// the current crate or was a compiler plugin
pub fn in_external_macro(cx: &T, span: Span) -> bool {
/// invokes in_macro with the expansion info of the given span
/// slightly heavy, try to use this after other checks have already happened
fn in_macro_ext(cx: &T, opt_info: Option<&ExpnInfo>) -> bool {
// no ExpnInfo = no macro
opt_info.map_or(false, |info| {
if let ExpnFormat::MacroAttribute(..) = info.callee.format {
// these are all plugins
return true;
}
// no span for the callee = external macro
info.callee.span.map_or(true, |span| {
// no snippet = external macro or compiler-builtin expansion
cx.sess().codemap().span_to_snippet(span).ok().map_or(true, |code| !code.starts_with("macro_rules"))
})
})
}
cx.sess().codemap().with_expn_info(span.expn_id, |info| in_macro_ext(cx, info))
}
/// check if a DefId's path matches the given absolute type path
/// usage e.g. with
/// `match_def_path(cx, id, &["core", "option", "Option"])`
pub fn match_def_path(cx: &LateContext, def_id: DefId, path: &[&str]) -> bool {
cx.tcx.with_path(def_id, |iter| {
iter.zip(path)
.all(|(nm, p)| nm.name().as_str() == *p)
})
}
/// check if type is struct or enum type with given def path
pub fn match_type(cx: &LateContext, ty: ty::Ty, path: &[&str]) -> bool {
match ty.sty {
ty::TyEnum(ref adt, _) | ty::TyStruct(ref adt, _) => match_def_path(cx, adt.did, path),
_ => false,
}
}
/// check if method call given in "expr" belongs to given trait
pub fn match_impl_method(cx: &LateContext, expr: &Expr, path: &[&str]) -> bool {
let method_call = ty::MethodCall::expr(expr.id);
let trt_id = cx.tcx
.tables
.borrow()
.method_map
.get(&method_call)
.and_then(|callee| cx.tcx.impl_of_method(callee.def_id));
if let Some(trt_id) = trt_id {
match_def_path(cx, trt_id, path)
} else {
false
}
}
/// check if method call given in "expr" belongs to given trait
pub fn match_trait_method(cx: &LateContext, expr: &Expr, path: &[&str]) -> bool {
let method_call = ty::MethodCall::expr(expr.id);
let trt_id = cx.tcx
.tables
.borrow()
.method_map
.get(&method_call)
.and_then(|callee| cx.tcx.trait_of_item(callee.def_id));
if let Some(trt_id) = trt_id {
match_def_path(cx, trt_id, path)
} else {
false
}
}
/// match a Path against a slice of segment string literals, e.g.
/// `match_path(path, &["std", "rt", "begin_unwind"])`
pub fn match_path(path: &Path, segments: &[&str]) -> bool {
path.segments.iter().rev().zip(segments.iter().rev()).all(|(a, b)| a.identifier.name.as_str() == *b)
}
/// match a Path against a slice of segment string literals, e.g.
/// `match_path(path, &["std", "rt", "begin_unwind"])`
pub fn match_path_ast(path: &ast::Path, segments: &[&str]) -> bool {
path.segments.iter().rev().zip(segments.iter().rev()).all(|(a, b)| a.identifier.name.as_str() == *b)
}
/// match an Expr against a chain of methods, and return the matched Exprs. For example, if `expr`
/// represents the `.baz()` in `foo.bar().baz()`, `matched_method_chain(expr, &["bar", "baz"])`
/// will return a Vec containing the Exprs for `.bar()` and `.baz()`
pub fn method_chain_args<'a>(expr: &'a Expr, methods: &[&str]) -> Option> {
let mut current = expr;
let mut matched = Vec::with_capacity(methods.len());
for method_name in methods.iter().rev() {
// method chains are stored last -> first
if let ExprMethodCall(ref name, _, ref args) = current.node {
if name.node.as_str() == *method_name {
matched.push(args); // build up `matched` backwards
current = &args[0] // go to parent expression
} else {
return None;
}
} else {
return None;
}
}
matched.reverse(); // reverse `matched`, so that it is in the same order as `methods`
Some(matched)
}
/// get the name of the item the expression is in, if available
pub fn get_item_name(cx: &LateContext, expr: &Expr) -> Option {
let parent_id = cx.tcx.map.get_parent(expr.id);
match cx.tcx.map.find(parent_id) {
Some(NodeItem(&Item{ ref name, .. })) |
Some(NodeTraitItem(&TraitItem{ ref name, .. })) |
Some(NodeImplItem(&ImplItem{ ref name, .. })) => Some(*name),
_ => None,
}
}
/// checks if a `let` decl is from a for loop desugaring
pub fn is_from_for_desugar(decl: &Decl) -> bool {
if_let_chain! {
[
let DeclLocal(ref loc) = decl.node,
let Some(ref expr) = loc.init,
let ExprMatch(_, _, MatchSource::ForLoopDesugar) = expr.node
],
{ return true; }
};
false
}
/// convert a span to a code snippet if available, otherwise use default, e.g.
/// `snippet(cx, expr.span, "..")`
pub fn snippet<'a, T: LintContext>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> {
cx.sess().codemap().span_to_snippet(span).map(From::from).unwrap_or(Cow::Borrowed(default))
}
/// Converts a span to a code snippet. Returns None if not available.
pub fn snippet_opt(cx: &T, span: Span) -> Option {
cx.sess().codemap().span_to_snippet(span).ok()
}
/// convert a span (from a block) to a code snippet if available, otherwise use default, e.g.
/// `snippet(cx, expr.span, "..")`
/// This trims the code of indentation, except for the first line
/// Use it for blocks or block-like things which need to be printed as such
pub fn snippet_block<'a, T: LintContext>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> {
let snip = snippet(cx, span, default);
trim_multiline(snip, true)
}
/// Like snippet_block, but add braces if the expr is not an ExprBlock
/// Also takes an Option which can be put inside the braces
pub fn expr_block<'a, T: LintContext>(cx: &T, expr: &Expr, option: Option, default: &'a str) -> Cow<'a, str> {
let code = snippet_block(cx, expr.span, default);
let string = option.map_or("".to_owned(), |s| s);
if let ExprBlock(_) = expr.node {
Cow::Owned(format!("{}{}", code, string))
} else if string.is_empty() {
Cow::Owned(format!("{{ {} }}", code))
} else {
Cow::Owned(format!("{{\n{};\n{}\n}}", code, string))
}
}
/// Trim indentation from a multiline string
/// with possibility of ignoring the first line
pub fn trim_multiline(s: Cow, ignore_first: bool) -> Cow {
let s_space = trim_multiline_inner(s, ignore_first, ' ');
let s_tab = trim_multiline_inner(s_space, ignore_first, '\t');
trim_multiline_inner(s_tab, ignore_first, ' ')
}
fn trim_multiline_inner(s: Cow, ignore_first: bool, ch: char) -> Cow {
let x = s.lines()
.skip(ignore_first as usize)
.filter_map(|l| {
if l.len() > 0 {
// ignore empty lines
Some(l.char_indices()
.find(|&(_, x)| x != ch)
.unwrap_or((l.len(), ch))
.0)
} else {
None
}
})
.min()
.unwrap_or(0);
if x > 0 {
Cow::Owned(s.lines()
.enumerate()
.map(|(i, l)| {
if (ignore_first && i == 0) || l.len() == 0 {
l
} else {
l.split_at(x).1
}
})
.collect::>()
.join("\n"))
} else {
s
}
}
/// get a parent expr if any – this is useful to constrain a lint
pub fn get_parent_expr<'c>(cx: &'c LateContext, e: &Expr) -> Option<&'c Expr> {
let map = &cx.tcx.map;
let node_id: NodeId = e.id;
let parent_id: NodeId = map.get_parent_node(node_id);
if node_id == parent_id {
return None;
}
map.find(parent_id).and_then(|node| {
if let NodeExpr(parent) = node {
Some(parent)
} else {
None
}
})
}
pub fn get_enclosing_block<'c>(cx: &'c LateContext, node: NodeId) -> Option<&'c Block> {
let map = &cx.tcx.map;
let enclosing_node = map.get_enclosing_scope(node)
.and_then(|enclosing_id| map.find(enclosing_id));
if let Some(node) = enclosing_node {
match node {
NodeBlock(ref block) => Some(block),
NodeItem(&Item{ node: ItemFn(_, _, _, _, _, ref block), .. }) => Some(block),
_ => None,
}
} else {
None
}
}
pub struct DiagnosticWrapper<'a>(pub DiagnosticBuilder<'a>);
impl<'a> Drop for DiagnosticWrapper<'a> {
fn drop(&mut self) {
self.0.emit();
}
}
impl<'a> DerefMut for DiagnosticWrapper<'a> {
fn deref_mut(&mut self) -> &mut DiagnosticBuilder<'a> {
&mut self.0
}
}
impl<'a> Deref for DiagnosticWrapper<'a> {
type Target = DiagnosticBuilder<'a>;
fn deref(&self) -> &DiagnosticBuilder<'a> {
&self.0
}
}
#[cfg(not(feature="structured_logging"))]
pub fn span_lint<'a, T: LintContext>(cx: &'a T, lint: &'static Lint, sp: Span, msg: &str) -> DiagnosticWrapper<'a> {
let mut db = cx.struct_span_lint(lint, sp, msg);
if cx.current_level(lint) != Level::Allow {
db.fileline_help(sp,
&format!("for further information visit https://github.com/Manishearth/rust-clippy/wiki#{}",
lint.name_lower()));
}
DiagnosticWrapper(db)
}
#[cfg(feature="structured_logging")]
pub fn span_lint<'a, T: LintContext>(cx: &'a T, lint: &'static Lint, sp: Span, msg: &str) -> DiagnosticWrapper<'a> {
// lint.name / lint.desc is can give details of the lint
// cx.sess().codemap() has all these nice functions for line/column/snippet details
// http://doc.rust-lang.org/syntax/codemap/struct.CodeMap.html#method.span_to_string
let mut db = cx.struct_span_lint(lint, sp, msg);
if cx.current_level(lint) != Level::Allow {
db.fileline_help(sp,
&format!("for further information visit https://github.com/Manishearth/rust-clippy/wiki#{}",
lint.name_lower()));
}
DiagnosticWrapper(db)
}
pub fn span_help_and_lint<'a, T: LintContext>(cx: &'a T, lint: &'static Lint, span: Span, msg: &str, help: &str)
-> DiagnosticWrapper<'a> {
let mut db = cx.struct_span_lint(lint, span, msg);
if cx.current_level(lint) != Level::Allow {
db.fileline_help(span,
&format!("{}\nfor further information visit \
https://github.com/Manishearth/rust-clippy/wiki#{}",
help,
lint.name_lower()));
}
DiagnosticWrapper(db)
}
pub fn span_note_and_lint<'a, T: LintContext>(cx: &'a T, lint: &'static Lint, span: Span, msg: &str, note_span: Span,
note: &str)
-> DiagnosticWrapper<'a> {
let mut db = cx.struct_span_lint(lint, span, msg);
if cx.current_level(lint) != Level::Allow {
if note_span == span {
db.fileline_note(note_span, note);
} else {
db.span_note(note_span, note);
}
db.fileline_help(span,
&format!("for further information visit https://github.com/Manishearth/rust-clippy/wiki#{}",
lint.name_lower()));
}
DiagnosticWrapper(db)
}
pub fn span_lint_and_then<'a, T: LintContext, F>(cx: &'a T, lint: &'static Lint, sp: Span, msg: &str, f: F)
-> DiagnosticWrapper<'a>
where F: Fn(&mut DiagnosticWrapper)
{
let mut db = DiagnosticWrapper(cx.struct_span_lint(lint, sp, msg));
if cx.current_level(lint) != Level::Allow {
f(&mut db);
db.fileline_help(sp,
&format!("for further information visit https://github.com/Manishearth/rust-clippy/wiki#{}",
lint.name_lower()));
}
db
}
/// return the base type for references and raw pointers
pub fn walk_ptrs_ty(ty: ty::Ty) -> ty::Ty {
match ty.sty {
ty::TyRef(_, ref tm) | ty::TyRawPtr(ref tm) => walk_ptrs_ty(tm.ty),
_ => ty,
}
}
/// return the base type for references and raw pointers, and count reference depth
pub fn walk_ptrs_ty_depth(ty: ty::Ty) -> (ty::Ty, usize) {
fn inner(ty: ty::Ty, depth: usize) -> (ty::Ty, usize) {
match ty.sty {
ty::TyRef(_, ref tm) | ty::TyRawPtr(ref tm) => inner(tm.ty, depth + 1),
_ => (ty, depth),
}
}
inner(ty, 0)
}
pub fn is_integer_literal(expr: &Expr, value: u64) -> bool {
// FIXME: use constant folding
if let ExprLit(ref spanned) = expr.node {
if let LitInt(v, _) = spanned.node {
return v == value;
}
}
false
}
pub fn is_adjusted(cx: &LateContext, e: &Expr) -> bool {
cx.tcx.tables.borrow().adjustments.get(&e.id).is_some()
}
pub struct LimitStack {
stack: Vec,
}
impl Drop for LimitStack {
fn drop(&mut self) {
assert_eq!(self.stack.len(), 1);
}
}
impl LimitStack {
pub fn new(limit: u64) -> LimitStack {
LimitStack { stack: vec![limit] }
}
pub fn limit(&self) -> u64 {
*self.stack.last().expect("there should always be a value in the stack")
}
pub fn push_attrs(&mut self, sess: &Session, attrs: &[ast::Attribute], name: &'static str) {
let stack = &mut self.stack;
parse_attrs(sess, attrs, name, |val| stack.push(val));
}
pub fn pop_attrs(&mut self, sess: &Session, attrs: &[ast::Attribute], name: &'static str) {
let stack = &mut self.stack;
parse_attrs(sess, attrs, name, |val| assert_eq!(stack.pop(), Some(val)));
}
}
fn parse_attrs(sess: &Session, attrs: &[ast::Attribute], name: &'static str, mut f: F) {
for attr in attrs {
let attr = &attr.node;
if attr.is_sugared_doc {
continue;
}
if let ast::MetaNameValue(ref key, ref value) = attr.value.node {
if *key == name {
if let LitStr(ref s, _) = value.node {
if let Ok(value) = FromStr::from_str(s) {
f(value)
} else {
sess.span_err(value.span, "not a number");
}
} else {
unreachable!()
}
}
}
}
}
pub fn is_exp_equal(cx: &LateContext, left: &Expr, right: &Expr) -> bool {
if let (Some(l), Some(r)) = (constant(cx, left), constant(cx, right)) {
if l == r {
return true;
}
}
match (&left.node, &right.node) {
(&ExprField(ref lfexp, ref lfident), &ExprField(ref rfexp, ref rfident)) => {
lfident.node == rfident.node && is_exp_equal(cx, lfexp, rfexp)
}
(&ExprLit(ref l), &ExprLit(ref r)) => l.node == r.node,
(&ExprPath(ref lqself, ref lsubpath), &ExprPath(ref rqself, ref rsubpath)) => {
both(lqself, rqself, is_qself_equal) && is_path_equal(lsubpath, rsubpath)
}
(&ExprTup(ref ltup), &ExprTup(ref rtup)) => is_exps_equal(cx, ltup, rtup),
(&ExprVec(ref l), &ExprVec(ref r)) => is_exps_equal(cx, l, r),
(&ExprCast(ref lx, ref lt), &ExprCast(ref rx, ref rt)) => is_exp_equal(cx, lx, rx) && is_cast_ty_equal(lt, rt),
_ => false,
}
}
fn is_exps_equal(cx: &LateContext, left: &[P], right: &[P]) -> bool {
over(left, right, |l, r| is_exp_equal(cx, l, r))
}
fn is_path_equal(left: &Path, right: &Path) -> bool {
// The == of idents doesn't work with different contexts,
// we have to be explicit about hygiene
left.global == right.global &&
over(&left.segments,
&right.segments,
|l, r| l.identifier.name == r.identifier.name && l.parameters == r.parameters)
}
fn is_qself_equal(left: &QSelf, right: &QSelf) -> bool {
left.ty.node == right.ty.node && left.position == right.position
}
fn over(left: &[X], right: &[X], mut eq_fn: F) -> bool
where F: FnMut(&X, &X) -> bool
{
left.len() == right.len() && left.iter().zip(right).all(|(x, y)| eq_fn(x, y))
}
fn both(l: &Option, r: &Option, mut eq_fn: F) -> bool
where F: FnMut(&X, &X) -> bool
{
l.as_ref().map_or_else(|| r.is_none(), |x| r.as_ref().map_or(false, |y| eq_fn(x, y)))
}
fn is_cast_ty_equal(left: &Ty, right: &Ty) -> bool {
match (&left.node, &right.node) {
(&TyVec(ref lvec), &TyVec(ref rvec)) => is_cast_ty_equal(lvec, rvec),
(&TyPtr(ref lmut), &TyPtr(ref rmut)) => lmut.mutbl == rmut.mutbl && is_cast_ty_equal(&*lmut.ty, &*rmut.ty),
(&TyRptr(_, ref lrmut), &TyRptr(_, ref rrmut)) => {
lrmut.mutbl == rrmut.mutbl && is_cast_ty_equal(&*lrmut.ty, &*rrmut.ty)
}
(&TyPath(ref lq, ref lpath), &TyPath(ref rq, ref rpath)) => {
both(lq, rq, is_qself_equal) && is_path_equal(lpath, rpath)
}
(&TyInfer, &TyInfer) => true,
_ => false,
}
}