// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Applies the "bivariance relationship" to two types and/or regions. //! If (A,B) are bivariant then either A <: B or B <: A. It occurs //! when type/lifetime parameters are unconstrained. Usually this is //! an error, but we permit it in the specific case where a type //! parameter is constrained in a where-clause via an associated type. //! //! There are several ways one could implement bivariance. You could //! just do nothing at all, for example, or you could fully verify //! that one of the two subtyping relationships hold. We choose to //! thread a middle line: we relate types up to regions, but ignore //! all region relationships. //! //! At one point, handling bivariance in this fashion was necessary //! for inference, but I'm actually not sure if that is true anymore. //! In particular, it might be enough to say (A,B) are bivariant for //! all (A,B). use super::combine::CombineFields; use super::type_variable::{BiTo}; use ty::{self, Ty, TyCtxt}; use ty::TyVar; use ty::relate::{Relate, RelateResult, TypeRelation}; pub struct Bivariate<'combine, 'infcx: 'combine, 'gcx: 'infcx+'tcx, 'tcx: 'infcx> { fields: &'combine mut CombineFields<'infcx, 'gcx, 'tcx>, a_is_expected: bool, } impl<'combine, 'infcx, 'gcx, 'tcx> Bivariate<'combine, 'infcx, 'gcx, 'tcx> { pub fn new(fields: &'combine mut CombineFields<'infcx, 'gcx, 'tcx>, a_is_expected: bool) -> Bivariate<'combine, 'infcx, 'gcx, 'tcx> { Bivariate { fields: fields, a_is_expected: a_is_expected } } } impl<'combine, 'infcx, 'gcx, 'tcx> TypeRelation<'infcx, 'gcx, 'tcx> for Bivariate<'combine, 'infcx, 'gcx, 'tcx> { fn tag(&self) -> &'static str { "Bivariate" } fn tcx(&self) -> TyCtxt<'infcx, 'gcx, 'tcx> { self.fields.tcx() } fn a_is_expected(&self) -> bool { self.a_is_expected } fn relate_with_variance>(&mut self, variance: ty::Variance, a: &T, b: &T) -> RelateResult<'tcx, T> { match variance { // If we have Foo and Foo is invariant w/r/t A, // and we want to assert that // // Foo <: Foo || // Foo <: Foo // // then still A must equal B. ty::Invariant => self.relate(a, b), ty::Covariant => self.relate(a, b), ty::Bivariant => self.relate(a, b), ty::Contravariant => self.relate(a, b), } } fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> { debug!("{}.tys({:?}, {:?})", self.tag(), a, b); if a == b { return Ok(a); } let infcx = self.fields.infcx; let a = infcx.type_variables.borrow_mut().replace_if_possible(a); let b = infcx.type_variables.borrow_mut().replace_if_possible(b); match (&a.sty, &b.sty) { (&ty::TyInfer(TyVar(a_id)), &ty::TyInfer(TyVar(b_id))) => { infcx.type_variables.borrow_mut().relate_vars(a_id, BiTo, b_id); Ok(a) } (&ty::TyInfer(TyVar(a_id)), _) => { self.fields.instantiate(b, BiTo, a_id, self.a_is_expected)?; Ok(a) } (_, &ty::TyInfer(TyVar(b_id))) => { self.fields.instantiate(a, BiTo, b_id, self.a_is_expected)?; Ok(a) } _ => { self.fields.infcx.super_combine_tys(self, a, b) } } } fn regions(&mut self, a: &'tcx ty::Region, _: &'tcx ty::Region) -> RelateResult<'tcx, &'tcx ty::Region> { Ok(a) } fn binders(&mut self, a: &ty::Binder, b: &ty::Binder) -> RelateResult<'tcx, ty::Binder> where T: Relate<'tcx> { let a1 = self.tcx().erase_late_bound_regions(a); let b1 = self.tcx().erase_late_bound_regions(b); let c = self.relate(&a1, &b1)?; Ok(ty::Binder(c)) } }