// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // The Rust abstract syntax tree. use codemap::{Span, Spanned, DUMMY_SP}; use abi::AbiSet; use ast_util; use opt_vec::OptVec; use parse::token::{InternedString, special_idents, str_to_ident}; use parse::token; use std::cell::RefCell; use std::hashmap::HashMap; use std::option::Option; use std::rc::Rc; use std::to_str::ToStr; use serialize::{Encodable, Decodable, Encoder, Decoder}; /// A pointer abstraction. FIXME(eddyb) #10676 use Rc in the future. pub type P = @T; /// Construct a P from a T value. pub fn P(value: T) -> P { @value } // FIXME #6993: in librustc, uses of "ident" should be replaced // by just "Name". // an identifier contains a Name (index into the interner // table) and a SyntaxContext to track renaming and // macro expansion per Flatt et al., "Macros // That Work Together" #[deriving(Clone, IterBytes, ToStr, TotalEq, TotalOrd)] pub struct Ident { name: Name, ctxt: SyntaxContext } impl Ident { /// Construct an identifier with the given name and an empty context: pub fn new(name: Name) -> Ident { Ident {name: name, ctxt: EMPTY_CTXT}} } impl Eq for Ident { fn eq(&self, other: &Ident) -> bool { if self.ctxt == other.ctxt { self.name == other.name } else { // IF YOU SEE ONE OF THESE FAILS: it means that you're comparing // idents that have different contexts. You can't fix this without // knowing whether the comparison should be hygienic or non-hygienic. // if it should be non-hygienic (most things are), just compare the // 'name' fields of the idents. Or, even better, replace the idents // with Name's. fail!("not allowed to compare these idents: {:?}, {:?}. Probably related to issue \\#6993", self, other); } } fn ne(&self, other: &Ident) -> bool { ! self.eq(other) } } /// A SyntaxContext represents a chain of macro-expandings /// and renamings. Each macro expansion corresponds to /// a fresh uint // I'm representing this syntax context as an index into // a table, in order to work around a compiler bug // that's causing unreleased memory to cause core dumps // and also perhaps to save some work in destructor checks. // the special uint '0' will be used to indicate an empty // syntax context. // this uint is a reference to a table stored in thread-local // storage. pub type SyntaxContext = u32; // the SCTable contains a table of SyntaxContext_'s. It // represents a flattened tree structure, to avoid having // managed pointers everywhere (that caused an ICE). // the mark_memo and rename_memo fields are side-tables // that ensure that adding the same mark to the same context // gives you back the same context as before. This shouldn't // change the semantics--everything here is immutable--but // it should cut down on memory use *a lot*; applying a mark // to a tree containing 50 identifiers would otherwise generate pub struct SCTable { table: RefCell<~[SyntaxContext_]>, mark_memo: RefCell>, rename_memo: RefCell>, } // NB: these must be placed in any SCTable... pub static EMPTY_CTXT : SyntaxContext = 0; pub static ILLEGAL_CTXT : SyntaxContext = 1; #[deriving(Eq, Encodable, Decodable,IterBytes)] pub enum SyntaxContext_ { EmptyCtxt, Mark (Mrk,SyntaxContext), // flattening the name and syntaxcontext into the rename... // HIDDEN INVARIANTS: // 1) the first name in a Rename node // can only be a programmer-supplied name. // 2) Every Rename node with a given Name in the // "to" slot must have the same name and context // in the "from" slot. In essence, they're all // pointers to a single "rename" event node. Rename (Ident,Name,SyntaxContext), // actually, IllegalCtxt may not be necessary. IllegalCtxt } /// A name is a part of an identifier, representing a string or gensym. It's /// the result of interning. pub type Name = u32; /// A mark represents a unique id associated with a macro expansion pub type Mrk = u32; impl Encodable for Ident { fn encode(&self, s: &mut S) { s.emit_str(token::get_ident(*self).get()); } } impl Decodable for Ident { fn decode(d: &mut D) -> Ident { str_to_ident(d.read_str()) } } /// Function name (not all functions have names) pub type FnIdent = Option; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Lifetime { id: NodeId, span: Span, // FIXME #7743 : change this to Name! ident: Ident } // a "Path" is essentially Rust's notion of a name; // for instance: std::cmp::Eq . It's represented // as a sequence of identifiers, along with a bunch // of supporting information. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Path { span: Span, /// A `::foo` path, is relative to the crate root rather than current /// module (like paths in an import). global: bool, /// The segments in the path: the things separated by `::`. segments: ~[PathSegment], } /// A segment of a path: an identifier, an optional lifetime, and a set of /// types. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct PathSegment { /// The identifier portion of this path segment. identifier: Ident, /// The lifetime parameters for this path segment. lifetimes: OptVec, /// The type parameters for this path segment, if present. types: OptVec>, } pub type CrateNum = u32; pub type NodeId = u32; #[deriving(Clone, TotalEq, TotalOrd, Eq, Encodable, Decodable, IterBytes, ToStr)] pub struct DefId { krate: CrateNum, node: NodeId, } /// Item definitions in the currently-compiled crate would have the CrateNum /// LOCAL_CRATE in their DefId. pub static LOCAL_CRATE: CrateNum = 0; pub static CRATE_NODE_ID: NodeId = 0; // When parsing and doing expansions, we initially give all AST nodes this AST // node value. Then later, in the renumber pass, we renumber them to have // small, positive ids. pub static DUMMY_NODE_ID: NodeId = -1; // The AST represents all type param bounds as types. // typeck::collect::compute_bounds matches these against // the "special" built-in traits (see middle::lang_items) and // detects Copy, Send, Send, and Freeze. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum TyParamBound { TraitTyParamBound(TraitRef), RegionTyParamBound } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct TyParam { ident: Ident, id: NodeId, bounds: OptVec, default: Option> } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Generics { lifetimes: OptVec, ty_params: OptVec, } impl Generics { pub fn is_parameterized(&self) -> bool { self.lifetimes.len() + self.ty_params.len() > 0 } pub fn is_lt_parameterized(&self) -> bool { self.lifetimes.len() > 0 } pub fn is_type_parameterized(&self) -> bool { self.ty_params.len() > 0 } } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum MethodProvenance { FromTrait(DefId), FromImpl(DefId), } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Def { DefFn(DefId, Purity), DefStaticMethod(/* method */ DefId, MethodProvenance, Purity), DefSelfTy(/* trait id */ NodeId), DefMod(DefId), DefForeignMod(DefId), DefStatic(DefId, bool /* is_mutbl */), DefArg(NodeId, BindingMode), DefLocal(NodeId, BindingMode), DefVariant(DefId /* enum */, DefId /* variant */, bool /* is_structure */), DefTy(DefId), DefTrait(DefId), DefPrimTy(PrimTy), DefTyParam(DefId, uint), DefBinding(NodeId, BindingMode), DefUse(DefId), DefUpvar(NodeId, // id of closed over var @Def, // closed over def NodeId, // expr node that creates the closure NodeId), // id for the block/body of the closure expr /// Note that if it's a tuple struct's definition, the node id of the DefId /// may either refer to the item definition's id or the StructDef.ctor_id. /// /// The cases that I have encountered so far are (this is not exhaustive): /// - If it's a ty_path referring to some tuple struct, then DefMap maps /// it to a def whose id is the item definition's id. /// - If it's an ExprPath referring to some tuple struct, then DefMap maps /// it to a def whose id is the StructDef.ctor_id. DefStruct(DefId), DefTyParamBinder(NodeId), /* struct, impl or trait with ty params */ DefRegion(NodeId), DefLabel(NodeId), DefMethod(DefId /* method */, Option /* trait */), } #[deriving(Clone, Eq, IterBytes, Encodable, Decodable, ToStr)] pub enum DefRegion { DefStaticRegion, DefEarlyBoundRegion(/* index */ uint, /* lifetime decl */ NodeId), DefLateBoundRegion(/* binder_id */ NodeId, /* depth */ uint, /* lifetime decl */ NodeId), DefFreeRegion(/* block scope */ NodeId, /* lifetime decl */ NodeId), } // The set of MetaItems that define the compilation environment of the crate, // used to drive conditional compilation pub type CrateConfig = ~[@MetaItem]; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Crate { module: Mod, attrs: ~[Attribute], config: CrateConfig, span: Span, } pub type MetaItem = Spanned; #[deriving(Clone, Encodable, Decodable, IterBytes)] pub enum MetaItem_ { MetaWord(InternedString), MetaList(InternedString, ~[@MetaItem]), MetaNameValue(InternedString, Lit), } // can't be derived because the MetaList requires an unordered comparison impl Eq for MetaItem_ { fn eq(&self, other: &MetaItem_) -> bool { match *self { MetaWord(ref ns) => match *other { MetaWord(ref no) => (*ns) == (*no), _ => false }, MetaNameValue(ref ns, ref vs) => match *other { MetaNameValue(ref no, ref vo) => { (*ns) == (*no) && vs.node == vo.node } _ => false }, MetaList(ref ns, ref miss) => match *other { MetaList(ref no, ref miso) => { ns == no && miss.iter().all(|mi| miso.iter().any(|x| x.node == mi.node)) } _ => false } } } } #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub struct Block { view_items: ~[ViewItem], stmts: ~[@Stmt], expr: Option<@Expr>, id: NodeId, rules: BlockCheckMode, span: Span, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Pat { id: NodeId, node: Pat_, span: Span, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct FieldPat { ident: Ident, pat: @Pat, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum BindingMode { BindByRef(Mutability), BindByValue(Mutability), } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Pat_ { PatWild, PatWildMulti, // A PatIdent may either be a new bound variable, // or a nullary enum (in which case the second field // is None). // In the nullary enum case, the parser can't determine // which it is. The resolver determines this, and // records this pattern's NodeId in an auxiliary // set (of "pat_idents that refer to nullary enums") PatIdent(BindingMode, Path, Option<@Pat>), PatEnum(Path, Option<~[@Pat]>), /* "none" means a * pattern where * we don't bind the fields to names */ PatStruct(Path, ~[FieldPat], bool), PatTup(~[@Pat]), PatUniq(@Pat), PatRegion(@Pat), // reference pattern PatLit(@Expr), PatRange(@Expr, @Expr), // [a, b, ..i, y, z] is represented as // PatVec(~[a, b], Some(i), ~[y, z]) PatVec(~[@Pat], Option<@Pat>, ~[@Pat]) } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Mutability { MutMutable, MutImmutable, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Sigil { BorrowedSigil, OwnedSigil, ManagedSigil } impl ToStr for Sigil { fn to_str(&self) -> ~str { match *self { BorrowedSigil => ~"&", OwnedSigil => ~"~", ManagedSigil => ~"@" } } } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum ExprVstore { ExprVstoreUniq, // ~[1,2,3,4] ExprVstoreSlice, // &[1,2,3,4] ExprVstoreMutSlice, // &mut [1,2,3,4] } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum BinOp { BiAdd, BiSub, BiMul, BiDiv, BiRem, BiAnd, BiOr, BiBitXor, BiBitAnd, BiBitOr, BiShl, BiShr, BiEq, BiLt, BiLe, BiNe, BiGe, BiGt, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum UnOp { UnBox, UnUniq, UnDeref, UnNot, UnNeg } pub type Stmt = Spanned; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Stmt_ { // could be an item or a local (let) binding: StmtDecl(@Decl, NodeId), // expr without trailing semi-colon (must have unit type): StmtExpr(@Expr, NodeId), // expr with trailing semi-colon (may have any type): StmtSemi(@Expr, NodeId), // bool: is there a trailing sem-colon? StmtMac(Mac, bool), } // FIXME (pending discussion of #1697, #2178...): local should really be // a refinement on pat. /// Local represents a `let` statement, e.g., `let : = ;` #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct Local { ty: P, pat: @Pat, init: Option<@Expr>, id: NodeId, span: Span, } pub type Decl = Spanned; #[deriving(Eq, Encodable, Decodable,IterBytes)] pub enum Decl_ { // a local (let) binding: DeclLocal(@Local), // an item binding: DeclItem(@Item), } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Arm { pats: ~[@Pat], guard: Option<@Expr>, body: P, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Field { ident: SpannedIdent, expr: @Expr, span: Span, } pub type SpannedIdent = Spanned; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum BlockCheckMode { DefaultBlock, UnsafeBlock(UnsafeSource), } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum UnsafeSource { CompilerGenerated, UserProvided, } #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub struct Expr { id: NodeId, node: Expr_, span: Span, } impl Expr { pub fn get_callee_id(&self) -> Option { match self.node { ExprMethodCall(callee_id, _, _, _, _) | ExprIndex(callee_id, _, _) | ExprBinary(callee_id, _, _, _) | ExprAssignOp(callee_id, _, _, _) | ExprUnary(callee_id, _, _) => Some(callee_id), _ => None, } } } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum CallSugar { NoSugar, ForSugar } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Expr_ { ExprVstore(@Expr, ExprVstore), // First expr is the place; second expr is the value. ExprBox(@Expr, @Expr), ExprVec(~[@Expr], Mutability), ExprCall(@Expr, ~[@Expr], CallSugar), ExprMethodCall(NodeId, Ident, ~[P], ~[@Expr], CallSugar), ExprTup(~[@Expr]), ExprBinary(NodeId, BinOp, @Expr, @Expr), ExprUnary(NodeId, UnOp, @Expr), ExprLit(@Lit), ExprCast(@Expr, P), ExprIf(@Expr, P, Option<@Expr>), ExprWhile(@Expr, P), // FIXME #6993: change to Option ExprForLoop(@Pat, @Expr, P, Option), // Conditionless loop (can be exited with break, cont, or ret) // FIXME #6993: change to Option ExprLoop(P, Option), ExprMatch(@Expr, ~[Arm]), ExprFnBlock(P, P), ExprProc(P, P), ExprBlock(P), ExprAssign(@Expr, @Expr), ExprAssignOp(NodeId, BinOp, @Expr, @Expr), ExprField(@Expr, Ident, ~[P]), ExprIndex(NodeId, @Expr, @Expr), /// Expression that looks like a "name". For example, /// `std::vec::from_elem::` is an ExprPath that's the "name" part /// of a function call. ExprPath(Path), ExprAddrOf(Mutability, @Expr), ExprBreak(Option), ExprAgain(Option), ExprRet(Option<@Expr>), /// Gets the log level for the enclosing module ExprLogLevel, ExprInlineAsm(InlineAsm), ExprMac(Mac), // A struct literal expression. ExprStruct(Path, ~[Field], Option<@Expr> /* base */), // A vector literal constructed from one repeated element. ExprRepeat(@Expr /* element */, @Expr /* count */, Mutability), // No-op: used solely so we can pretty-print faithfully ExprParen(@Expr) } // When the main rust parser encounters a syntax-extension invocation, it // parses the arguments to the invocation as a token-tree. This is a very // loose structure, such that all sorts of different AST-fragments can // be passed to syntax extensions using a uniform type. // // If the syntax extension is an MBE macro, it will attempt to match its // LHS "matchers" against the provided token tree, and if it finds a // match, will transcribe the RHS token tree, splicing in any captured // macro_parser::matched_nonterminals into the TTNonterminals it finds. // // The RHS of an MBE macro is the only place a TTNonterminal or TTSeq // makes any real sense. You could write them elsewhere but nothing // else knows what to do with them, so you'll probably get a syntax // error. // #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] #[doc="For macro invocations; parsing is delegated to the macro"] pub enum TokenTree { // a single token TTTok(Span, ::parse::token::Token), // a delimited sequence (the delimiters appear as the first // and last elements of the vector) TTDelim(@~[TokenTree]), // These only make sense for right-hand-sides of MBE macros: // a kleene-style repetition sequence with a span, a TTForest, // an optional separator, and a boolean where true indicates // zero or more (..), and false indicates one or more (+). TTSeq(Span, @~[TokenTree], Option<::parse::token::Token>, bool), // a syntactic variable that will be filled in by macro expansion. TTNonterminal(Span, Ident) } // // Matchers are nodes defined-by and recognized-by the main rust parser and // language, but they're only ever found inside syntax-extension invocations; // indeed, the only thing that ever _activates_ the rules in the rust parser // for parsing a matcher is a matcher looking for the 'matchers' nonterminal // itself. Matchers represent a small sub-language for pattern-matching // token-trees, and are thus primarily used by the macro-defining extension // itself. // // MatchTok // -------- // // A matcher that matches a single token, denoted by the token itself. So // long as there's no $ involved. // // // MatchSeq // -------- // // A matcher that matches a sequence of sub-matchers, denoted various // possible ways: // // $(M)* zero or more Ms // $(M)+ one or more Ms // $(M),+ one or more comma-separated Ms // $(A B C);* zero or more semi-separated 'A B C' seqs // // // MatchNonterminal // ----------------- // // A matcher that matches one of a few interesting named rust // nonterminals, such as types, expressions, items, or raw token-trees. A // black-box matcher on expr, for example, binds an expr to a given ident, // and that ident can re-occur as an interpolation in the RHS of a // macro-by-example rule. For example: // // $foo:expr => 1 + $foo // interpolate an expr // $foo:tt => $foo // interpolate a token-tree // $foo:tt => bar! $foo // only other valid interpolation // // is in arg position for another // // macro // // As a final, horrifying aside, note that macro-by-example's input is // also matched by one of these matchers. Holy self-referential! It is matched // by a MatchSeq, specifically this one: // // $( $lhs:matchers => $rhs:tt );+ // // If you understand that, you have closed to loop and understand the whole // macro system. Congratulations. // pub type Matcher = Spanned; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Matcher_ { // match one token MatchTok(::parse::token::Token), // match repetitions of a sequence: body, separator, zero ok?, // lo, hi position-in-match-array used: MatchSeq(~[Matcher], Option<::parse::token::Token>, bool, uint, uint), // parse a Rust NT: name to bind, name of NT, position in match array: MatchNonterminal(Ident, Ident, uint) } pub type Mac = Spanned; // represents a macro invocation. The Path indicates which macro // is being invoked, and the vector of token-trees contains the source // of the macro invocation. // There's only one flavor, now, so this could presumably be simplified. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Mac_ { MacInvocTT(Path, ~[TokenTree], SyntaxContext), // new macro-invocation } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum StrStyle { CookedStr, RawStr(uint) } pub type Lit = Spanned; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Lit_ { LitStr(InternedString, StrStyle), LitBinary(Rc<~[u8]>), LitChar(u32), LitInt(i64, IntTy), LitUint(u64, UintTy), LitIntUnsuffixed(i64), LitFloat(InternedString, FloatTy), LitFloatUnsuffixed(InternedString), LitNil, LitBool(bool), } // NB: If you change this, you'll probably want to change the corresponding // type structure in middle/ty.rs as well. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct MutTy { ty: P, mutbl: Mutability, } #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct TypeField { ident: Ident, mt: MutTy, span: Span, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct TypeMethod { ident: Ident, attrs: ~[Attribute], purity: Purity, decl: P, generics: Generics, explicit_self: ExplicitSelf, id: NodeId, span: Span, } // A trait method is either required (meaning it doesn't have an // implementation, just a signature) or provided (meaning it has a default // implementation). #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum TraitMethod { Required(TypeMethod), Provided(@Method), } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum IntTy { TyI, TyI8, TyI16, TyI32, TyI64, } impl ToStr for IntTy { fn to_str(&self) -> ~str { ast_util::int_ty_to_str(*self) } } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum UintTy { TyU, TyU8, TyU16, TyU32, TyU64, } impl ToStr for UintTy { fn to_str(&self) -> ~str { ast_util::uint_ty_to_str(*self) } } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum FloatTy { TyF32, TyF64, } impl ToStr for FloatTy { fn to_str(&self) -> ~str { ast_util::float_ty_to_str(*self) } } // NB Eq method appears below. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Ty { id: NodeId, node: Ty_, span: Span, } // Not represented directly in the AST, referred to by name through a ty_path. #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum PrimTy { TyInt(IntTy), TyUint(UintTy), TyFloat(FloatTy), TyStr, TyBool, TyChar } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Onceness { Once, Many } impl ToStr for Onceness { fn to_str(&self) -> ~str { match *self { Once => ~"once", Many => ~"many" } } } #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct ClosureTy { sigil: Sigil, region: Option, lifetimes: OptVec, purity: Purity, onceness: Onceness, decl: P, // Optional optvec distinguishes between "fn()" and "fn:()" so we can // implement issue #7264. None means "fn()", which means infer a default // bound based on pointer sigil during typeck. Some(Empty) means "fn:()", // which means use no bounds (e.g., not even Owned on a ~fn()). bounds: Option>, } #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct BareFnTy { purity: Purity, abis: AbiSet, lifetimes: OptVec, decl: P } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Ty_ { TyNil, TyBot, /* bottom type */ TyBox(P), TyUniq(P), TyVec(P), TyFixedLengthVec(P, @Expr), TyPtr(MutTy), TyRptr(Option, MutTy), TyClosure(@ClosureTy), TyBareFn(@BareFnTy), TyTup(~[P]), TyPath(Path, Option>, NodeId), // for #7264; see above TyTypeof(@Expr), // TyInfer means the type should be inferred instead of it having been // specified. This should only appear at the "top level" of a type and not // nested in one. TyInfer, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum AsmDialect { AsmAtt, AsmIntel } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct InlineAsm { asm: InternedString, asm_str_style: StrStyle, clobbers: InternedString, inputs: ~[(InternedString, @Expr)], outputs: ~[(InternedString, @Expr)], volatile: bool, alignstack: bool, dialect: AsmDialect } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Arg { ty: P, pat: @Pat, id: NodeId, } impl Arg { pub fn new_self(span: Span, mutability: Mutability) -> Arg { let path = ast_util::ident_to_path(span, special_idents::self_); Arg { // HACK(eddyb) fake type for the self argument. ty: P(Ty { id: DUMMY_NODE_ID, node: TyInfer, span: DUMMY_SP, }), pat: @Pat { id: DUMMY_NODE_ID, node: PatIdent(BindByValue(mutability), path, None), span: span }, id: DUMMY_NODE_ID } } } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct FnDecl { inputs: ~[Arg], output: P, cf: RetStyle, variadic: bool } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Purity { UnsafeFn, // declared with "unsafe fn" ImpureFn, // declared with "fn" ExternFn, // declared with "extern fn" } impl ToStr for Purity { fn to_str(&self) -> ~str { match *self { ImpureFn => ~"impure", UnsafeFn => ~"unsafe", ExternFn => ~"extern" } } } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum RetStyle { NoReturn, // functions with return type _|_ that always // raise an error or exit (i.e. never return to the caller) Return, // everything else } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum ExplicitSelf_ { SelfStatic, // no self SelfValue, // `self` SelfRegion(Option, Mutability), // `&'lt self`, `&'lt mut self` SelfUniq // `~self` } pub type ExplicitSelf = Spanned; #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct Method { ident: Ident, attrs: ~[Attribute], generics: Generics, explicit_self: ExplicitSelf, purity: Purity, decl: P, body: P, id: NodeId, span: Span, vis: Visibility, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Mod { view_items: ~[ViewItem], items: ~[@Item], } #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub struct ForeignMod { abis: AbiSet, view_items: ~[ViewItem], items: ~[@ForeignItem], } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct VariantArg { ty: P, id: NodeId, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum VariantKind { TupleVariantKind(~[VariantArg]), StructVariantKind(@StructDef), } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct EnumDef { variants: ~[P], } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Variant_ { name: Ident, attrs: ~[Attribute], kind: VariantKind, id: NodeId, disr_expr: Option<@Expr>, vis: Visibility, } pub type Variant = Spanned; #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct PathListIdent_ { name: Ident, id: NodeId, } pub type PathListIdent = Spanned; pub type ViewPath = Spanned; #[deriving(Eq, Encodable, Decodable, IterBytes)] pub enum ViewPath_ { // quux = foo::bar::baz // // or just // // foo::bar::baz (with 'baz =' implicitly on the left) ViewPathSimple(Ident, Path, NodeId), // foo::bar::* ViewPathGlob(Path, NodeId), // foo::bar::{a,b,c} ViewPathList(Path, ~[PathListIdent], NodeId) } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct ViewItem { node: ViewItem_, attrs: ~[Attribute], vis: Visibility, span: Span, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum ViewItem_ { // ident: name used to refer to this crate in the code // optional (InternedString,StrStyle): if present, this is a location // (containing arbitrary characters) from which to fetch the crate sources // For example, extern mod whatever = "github.com/mozilla/rust" ViewItemExternMod(Ident, Option<(InternedString,StrStyle)>, NodeId), ViewItemUse(~[@ViewPath]), } // Meta-data associated with an item pub type Attribute = Spanned; // Distinguishes between Attributes that decorate items and Attributes that // are contained as statements within items. These two cases need to be // distinguished for pretty-printing. #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub enum AttrStyle { AttrOuter, AttrInner, } // doc-comments are promoted to attributes that have is_sugared_doc = true #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub struct Attribute_ { style: AttrStyle, value: @MetaItem, is_sugared_doc: bool, } /* TraitRef's appear in impls. resolve maps each TraitRef's ref_id to its defining trait; that's all that the ref_id is for. The impl_id maps to the "self type" of this impl. If this impl is an ItemImpl, the impl_id is redundant (it could be the same as the impl's node id). */ #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub struct TraitRef { path: Path, ref_id: NodeId, } #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub enum Visibility { Public, Private, Inherited, } impl Visibility { pub fn inherit_from(&self, parent_visibility: Visibility) -> Visibility { match self { &Inherited => parent_visibility, &Public | &Private => *self } } } #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub struct StructField_ { kind: StructFieldKind, id: NodeId, ty: P, attrs: ~[Attribute], } pub type StructField = Spanned; #[deriving(Clone, Eq, Encodable, Decodable,IterBytes)] pub enum StructFieldKind { NamedField(Ident, Visibility), UnnamedField // element of a tuple-like struct } #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct StructDef { fields: ~[StructField], /* fields, not including ctor */ /* ID of the constructor. This is only used for tuple- or enum-like * structs. */ ctor_id: Option } /* FIXME (#3300): Should allow items to be anonymous. Right now we just use dummy names for anon items. */ #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub struct Item { ident: Ident, attrs: ~[Attribute], id: NodeId, node: Item_, vis: Visibility, span: Span, } #[deriving(Clone, Eq, Encodable, Decodable, IterBytes)] pub enum Item_ { ItemStatic(P, Mutability, @Expr), ItemFn(P, Purity, AbiSet, Generics, P), ItemMod(Mod), ItemForeignMod(ForeignMod), ItemTy(P, Generics), ItemEnum(EnumDef, Generics), ItemStruct(@StructDef, Generics), ItemTrait(Generics, ~[TraitRef], ~[TraitMethod]), ItemImpl(Generics, Option, // (optional) trait this impl implements P, // self ~[@Method]), // a macro invocation (which includes macro definition) ItemMac(Mac), } #[deriving(Eq, Encodable, Decodable,IterBytes)] pub struct ForeignItem { ident: Ident, attrs: ~[Attribute], node: ForeignItem_, id: NodeId, span: Span, vis: Visibility, } #[deriving(Eq, Encodable, Decodable,IterBytes)] pub enum ForeignItem_ { ForeignItemFn(P, Generics), ForeignItemStatic(P, /* is_mutbl */ bool), } // The data we save and restore about an inlined item or method. This is not // part of the AST that we parse from a file, but it becomes part of the tree // that we trans. #[deriving(Eq, Encodable, Decodable,IterBytes)] pub enum InlinedItem { IIItem(@Item), IIMethod(DefId /* impl id */, bool /* is provided */, @Method), IIForeign(@ForeignItem), } #[cfg(test)] mod test { use serialize; use extra; use codemap::*; use super::*; fn is_freeze() {} // Assert that the AST remains Freeze (#10693). #[test] fn ast_is_freeze() { is_freeze::(); } // are ASTs encodable? #[test] fn check_asts_encodable() { let e = Crate { module: Mod {view_items: ~[], items: ~[]}, attrs: ~[], config: ~[], span: Span { lo: BytePos(10), hi: BytePos(20), expn_info: None, }, }; // doesn't matter which encoder we use.... let _f = (&e as &serialize::Encodable); } }