use byteorder::{self, ByteOrder}; use std::collections::HashMap; use std::ptr; use interpreter::{EvalError, EvalResult}; use primval::PrimVal; pub struct Memory { next_id: u64, alloc_map: HashMap, } #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub struct AllocId(u64); #[derive(Debug)] pub struct Allocation { pub bytes: Vec, // TODO(tsion): relocations // TODO(tsion): undef mask } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub struct Pointer { pub alloc_id: AllocId, pub offset: usize, } #[derive(Clone, Debug, PartialEq, Eq)] pub struct FieldRepr { pub offset: usize, pub repr: Repr, } #[derive(Clone, Debug, PartialEq, Eq)] pub enum Repr { Bool, I8, I16, I32, I64, /// The representation for product types including tuples, structs, and the contents of enum /// variants. Product { /// Size in bytes. size: usize, fields: Vec, }, /// The representation for a sum type, i.e. a Rust enum. Sum { /// The size of the largest variant in bytes. max_variant_size: usize, variants: Vec, discr: Box, }, // Array { // /// Number of elements. // length: usize, // elem: Repr, // }, } impl Memory { pub fn new() -> Self { Memory { next_id: 0, alloc_map: HashMap::new() } } pub fn allocate(&mut self, size: usize) -> Pointer { let id = AllocId(self.next_id); let alloc = Allocation { bytes: vec![0; size] }; self.alloc_map.insert(self.next_id, alloc); self.next_id += 1; Pointer { alloc_id: id, offset: 0, } } pub fn get(&self, id: AllocId) -> EvalResult<&Allocation> { self.alloc_map.get(&id.0).ok_or(EvalError::DanglingPointerDeref) } pub fn get_mut(&mut self, id: AllocId) -> EvalResult<&mut Allocation> { self.alloc_map.get_mut(&id.0).ok_or(EvalError::DanglingPointerDeref) } fn get_bytes(&self, ptr: Pointer, size: usize) -> EvalResult<&[u8]> { let alloc = try!(self.get(ptr.alloc_id)); try!(alloc.check_bytes(ptr.offset, ptr.offset + size)); Ok(&alloc.bytes[ptr.offset..ptr.offset + size]) } fn get_bytes_mut(&mut self, ptr: Pointer, size: usize) -> EvalResult<&mut [u8]> { let alloc = try!(self.get_mut(ptr.alloc_id)); try!(alloc.check_bytes(ptr.offset, ptr.offset + size)); Ok(&mut alloc.bytes[ptr.offset..ptr.offset + size]) } pub fn copy(&mut self, src: Pointer, dest: Pointer, size: usize) -> EvalResult<()> { let src_bytes = try!(self.get_bytes_mut(src, size)).as_mut_ptr(); let dest_bytes = try!(self.get_bytes_mut(dest, size)).as_mut_ptr(); // SAFE: The above indexing would have panicked if there weren't at least `size` bytes // behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and // `dest` could possibly overlap. unsafe { if src.alloc_id == dest.alloc_id { ptr::copy(src_bytes, dest_bytes, size); } else { ptr::copy_nonoverlapping(src_bytes, dest_bytes, size); } } Ok(()) } pub fn read_primval(&self, ptr: Pointer, repr: &Repr) -> EvalResult { match *repr { Repr::Bool => self.read_bool(ptr).map(PrimVal::Bool), Repr::I8 => self.read_i8(ptr).map(PrimVal::I8), Repr::I16 => self.read_i16(ptr).map(PrimVal::I16), Repr::I32 => self.read_i32(ptr).map(PrimVal::I32), Repr::I64 => self.read_i64(ptr).map(PrimVal::I64), _ => panic!("primitive read of non-primitive: {:?}", repr), } } pub fn write_primval(&mut self, ptr: Pointer, val: PrimVal) -> EvalResult<()> { match val { PrimVal::Bool(b) => self.write_bool(ptr, b), PrimVal::I8(n) => self.write_i8(ptr, n), PrimVal::I16(n) => self.write_i16(ptr, n), PrimVal::I32(n) => self.write_i32(ptr, n), PrimVal::I64(n) => self.write_i64(ptr, n), } } pub fn read_bool(&self, ptr: Pointer) -> EvalResult { let bytes = try!(self.get_bytes(ptr, 1)); match bytes[0] { 0 => Ok(false), 1 => Ok(true), _ => Err(EvalError::InvalidBool), } } pub fn write_bool(&mut self, ptr: Pointer, b: bool) -> EvalResult<()> { let bytes = try!(self.get_bytes_mut(ptr, 1)); bytes[0] = b as u8; Ok(()) } pub fn read_i8(&self, ptr: Pointer) -> EvalResult { self.get_bytes(ptr, 1).map(|b| b[0] as i8) } pub fn write_i8(&mut self, ptr: Pointer, n: i8) -> EvalResult<()> { self.get_bytes_mut(ptr, 1).map(|b| b[0] = n as u8) } pub fn read_i16(&self, ptr: Pointer) -> EvalResult { self.get_bytes(ptr, 2).map(byteorder::NativeEndian::read_i16) } pub fn write_i16(&mut self, ptr: Pointer, n: i16) -> EvalResult<()> { let bytes = try!(self.get_bytes_mut(ptr, 2)); byteorder::NativeEndian::write_i16(bytes, n); Ok(()) } pub fn read_i32(&self, ptr: Pointer) -> EvalResult { self.get_bytes(ptr, 4).map(byteorder::NativeEndian::read_i32) } pub fn write_i32(&mut self, ptr: Pointer, n: i32) -> EvalResult<()> { let bytes = try!(self.get_bytes_mut(ptr, 4)); byteorder::NativeEndian::write_i32(bytes, n); Ok(()) } pub fn read_i64(&self, ptr: Pointer) -> EvalResult { self.get_bytes(ptr, 8).map(byteorder::NativeEndian::read_i64) } pub fn write_i64(&mut self, ptr: Pointer, n: i64) -> EvalResult<()> { let bytes = try!(self.get_bytes_mut(ptr, 8)); byteorder::NativeEndian::write_i64(bytes, n); Ok(()) } } impl Allocation { fn check_bytes(&self, start: usize, end: usize) -> EvalResult<()> { if start <= self.bytes.len() && end <= self.bytes.len() { Ok(()) } else { Err(EvalError::PointerOutOfBounds) } } } impl Pointer { pub fn offset(self, i: usize) -> Self { // TODO(tsion): Check for offset out of bounds. Pointer { offset: self.offset + i, ..self } } } impl Repr { pub fn size(&self) -> usize { match *self { Repr::Bool => 1, Repr::I8 => 1, Repr::I16 => 2, Repr::I32 => 4, Repr::I64 => 8, Repr::Product { size, .. } => size, Repr::Sum { ref discr, max_variant_size, .. } => discr.size() + max_variant_size, } } }