use rustc_data_structures::fx::FxHashMap; use rustc_index::bit_set::BitSet; use rustc_middle::mir::{self, BasicBlock, Body, Location, Place}; use rustc_middle::ty::RegionVid; use rustc_middle::ty::TyCtxt; use rustc_mir_dataflow::impls::{EverInitializedPlaces, MaybeUninitializedPlaces}; use rustc_mir_dataflow::ResultsVisitable; use rustc_mir_dataflow::{self, fmt::DebugWithContext, GenKill}; use rustc_mir_dataflow::{Analysis, Direction, Results}; use std::fmt; use std::iter; use crate::{ places_conflict, BorrowSet, PlaceConflictBias, PlaceExt, RegionInferenceContext, ToRegionVid, }; /// A tuple with named fields that can hold either the results or the transient state of the /// dataflow analyses used by the borrow checker. #[derive(Debug)] pub struct BorrowckAnalyses { pub borrows: B, pub uninits: U, pub ever_inits: E, } /// The results of the dataflow analyses used by the borrow checker. pub type BorrowckResults<'mir, 'tcx> = BorrowckAnalyses< Results<'tcx, Borrows<'mir, 'tcx>>, Results<'tcx, MaybeUninitializedPlaces<'mir, 'tcx>>, Results<'tcx, EverInitializedPlaces<'mir, 'tcx>>, >; /// The transient state of the dataflow analyses used by the borrow checker. pub type BorrowckFlowState<'mir, 'tcx> = as ResultsVisitable<'tcx>>::FlowState; macro_rules! impl_visitable { ( $( $T:ident { $( $field:ident : $A:ident ),* $(,)? } )* ) => { $( impl<'tcx, $($A),*, D: Direction> ResultsVisitable<'tcx> for $T<$( Results<'tcx, $A> ),*> where $( $A: Analysis<'tcx, Direction = D>, )* { type Direction = D; type FlowState = $T<$( $A::Domain ),*>; fn new_flow_state(&self, body: &mir::Body<'tcx>) -> Self::FlowState { $T { $( $field: self.$field.analysis.bottom_value(body) ),* } } fn reset_to_block_entry( &self, state: &mut Self::FlowState, block: BasicBlock, ) { $( state.$field.clone_from(&self.$field.entry_set_for_block(block)); )* } fn reconstruct_before_statement_effect( &self, state: &mut Self::FlowState, stmt: &mir::Statement<'tcx>, loc: Location, ) { $( self.$field.analysis .apply_before_statement_effect(&mut state.$field, stmt, loc); )* } fn reconstruct_statement_effect( &self, state: &mut Self::FlowState, stmt: &mir::Statement<'tcx>, loc: Location, ) { $( self.$field.analysis .apply_statement_effect(&mut state.$field, stmt, loc); )* } fn reconstruct_before_terminator_effect( &self, state: &mut Self::FlowState, term: &mir::Terminator<'tcx>, loc: Location, ) { $( self.$field.analysis .apply_before_terminator_effect(&mut state.$field, term, loc); )* } fn reconstruct_terminator_effect( &self, state: &mut Self::FlowState, term: &mir::Terminator<'tcx>, loc: Location, ) { $( self.$field.analysis .apply_terminator_effect(&mut state.$field, term, loc); )* } } )* } } impl_visitable! { BorrowckAnalyses { borrows: B, uninits: U, ever_inits: E } } rustc_index::newtype_index! { pub struct BorrowIndex { DEBUG_FORMAT = "bw{}" } } /// `Borrows` stores the data used in the analyses that track the flow /// of borrows. /// /// It uniquely identifies every borrow (`Rvalue::Ref`) by a /// `BorrowIndex`, and maps each such index to a `BorrowData` /// describing the borrow. These indexes are used for representing the /// borrows in compact bitvectors. pub struct Borrows<'a, 'tcx> { tcx: TyCtxt<'tcx>, body: &'a Body<'tcx>, borrow_set: &'a BorrowSet<'tcx>, borrows_out_of_scope_at_location: FxHashMap>, } struct StackEntry { bb: mir::BasicBlock, lo: usize, hi: usize, } struct OutOfScopePrecomputer<'a, 'tcx> { visited: BitSet, visit_stack: Vec, body: &'a Body<'tcx>, regioncx: &'a RegionInferenceContext<'tcx>, borrows_out_of_scope_at_location: FxHashMap>, } impl<'a, 'tcx> OutOfScopePrecomputer<'a, 'tcx> { fn new(body: &'a Body<'tcx>, regioncx: &'a RegionInferenceContext<'tcx>) -> Self { OutOfScopePrecomputer { visited: BitSet::new_empty(body.basic_blocks().len()), visit_stack: vec![], body, regioncx, borrows_out_of_scope_at_location: FxHashMap::default(), } } } impl<'tcx> OutOfScopePrecomputer<'_, 'tcx> { fn precompute_borrows_out_of_scope( &mut self, borrow_index: BorrowIndex, borrow_region: RegionVid, location: Location, ) { // We visit one BB at a time. The complication is that we may start in the // middle of the first BB visited (the one containing `location`), in which // case we may have to later on process the first part of that BB if there // is a path back to its start. // For visited BBs, we record the index of the first statement processed. // (In fully processed BBs this index is 0.) Note also that we add BBs to // `visited` once they are added to `stack`, before they are actually // processed, because this avoids the need to look them up again on // completion. self.visited.insert(location.block); let mut first_lo = location.statement_index; let first_hi = self.body[location.block].statements.len(); self.visit_stack.push(StackEntry { bb: location.block, lo: first_lo, hi: first_hi }); while let Some(StackEntry { bb, lo, hi }) = self.visit_stack.pop() { // If we process the first part of the first basic block (i.e. we encounter that block // for the second time), we no longer have to visit its successors again. let mut finished_early = bb == location.block && hi != first_hi; for i in lo..=hi { let location = Location { block: bb, statement_index: i }; // If region does not contain a point at the location, then add to list and skip // successor locations. if !self.regioncx.region_contains(borrow_region, location) { debug!("borrow {:?} gets killed at {:?}", borrow_index, location); self.borrows_out_of_scope_at_location .entry(location) .or_default() .push(borrow_index); finished_early = true; break; } } if !finished_early { // Add successor BBs to the work list, if necessary. let bb_data = &self.body[bb]; debug_assert!(hi == bb_data.statements.len()); for &succ_bb in bb_data.terminator().successors() { if self.visited.insert(succ_bb) == false { if succ_bb == location.block && first_lo > 0 { // `succ_bb` has been seen before. If it wasn't // fully processed, add its first part to `stack` // for processing. self.visit_stack.push(StackEntry { bb: succ_bb, lo: 0, hi: first_lo - 1, }); // And update this entry with 0, to represent the // whole BB being processed. first_lo = 0; } } else { // succ_bb hasn't been seen before. Add it to // `stack` for processing. self.visit_stack.push(StackEntry { bb: succ_bb, lo: 0, hi: self.body[succ_bb].statements.len(), }); } } } } self.visited.clear(); } } impl<'a, 'tcx> Borrows<'a, 'tcx> { crate fn new( tcx: TyCtxt<'tcx>, body: &'a Body<'tcx>, nonlexical_regioncx: &'a RegionInferenceContext<'tcx>, borrow_set: &'a BorrowSet<'tcx>, ) -> Self { let mut prec = OutOfScopePrecomputer::new(body, nonlexical_regioncx); for (borrow_index, borrow_data) in borrow_set.iter_enumerated() { let borrow_region = borrow_data.region.to_region_vid(); let location = borrow_data.reserve_location; prec.precompute_borrows_out_of_scope(borrow_index, borrow_region, location); } Borrows { tcx, body, borrow_set, borrows_out_of_scope_at_location: prec.borrows_out_of_scope_at_location, } } pub fn location(&self, idx: BorrowIndex) -> &Location { &self.borrow_set[idx].reserve_location } /// Add all borrows to the kill set, if those borrows are out of scope at `location`. /// That means they went out of a nonlexical scope fn kill_loans_out_of_scope_at_location( &self, trans: &mut impl GenKill, location: Location, ) { // NOTE: The state associated with a given `location` // reflects the dataflow on entry to the statement. // Iterate over each of the borrows that we've precomputed // to have went out of scope at this location and kill them. // // We are careful always to call this function *before* we // set up the gen-bits for the statement or // terminator. That way, if the effect of the statement or // terminator *does* introduce a new loan of the same // region, then setting that gen-bit will override any // potential kill introduced here. if let Some(indices) = self.borrows_out_of_scope_at_location.get(&location) { trans.kill_all(indices.iter().copied()); } } /// Kill any borrows that conflict with `place`. fn kill_borrows_on_place(&self, trans: &mut impl GenKill, place: Place<'tcx>) { debug!("kill_borrows_on_place: place={:?}", place); let other_borrows_of_local = self .borrow_set .local_map .get(&place.local) .into_iter() .flat_map(|bs| bs.iter()) .copied(); // If the borrowed place is a local with no projections, all other borrows of this // local must conflict. This is purely an optimization so we don't have to call // `places_conflict` for every borrow. if place.projection.is_empty() { if !self.body.local_decls[place.local].is_ref_to_static() { trans.kill_all(other_borrows_of_local); } return; } // By passing `PlaceConflictBias::NoOverlap`, we conservatively assume that any given // pair of array indices are unequal, so that when `places_conflict` returns true, we // will be assured that two places being compared definitely denotes the same sets of // locations. let definitely_conflicting_borrows = other_borrows_of_local.filter(|&i| { places_conflict( self.tcx, self.body, self.borrow_set[i].borrowed_place, place, PlaceConflictBias::NoOverlap, ) }); trans.kill_all(definitely_conflicting_borrows); } } impl<'tcx> rustc_mir_dataflow::AnalysisDomain<'tcx> for Borrows<'_, 'tcx> { type Domain = BitSet; const NAME: &'static str = "borrows"; fn bottom_value(&self, _: &mir::Body<'tcx>) -> Self::Domain { // bottom = nothing is reserved or activated yet; BitSet::new_empty(self.borrow_set.len() * 2) } fn initialize_start_block(&self, _: &mir::Body<'tcx>, _: &mut Self::Domain) { // no borrows of code region_scopes have been taken prior to // function execution, so this method has no effect. } } impl<'tcx> rustc_mir_dataflow::GenKillAnalysis<'tcx> for Borrows<'_, 'tcx> { type Idx = BorrowIndex; fn before_statement_effect( &self, trans: &mut impl GenKill, _statement: &mir::Statement<'tcx>, location: Location, ) { self.kill_loans_out_of_scope_at_location(trans, location); } fn statement_effect( &self, trans: &mut impl GenKill, stmt: &mir::Statement<'tcx>, location: Location, ) { match stmt.kind { mir::StatementKind::Assign(box (lhs, ref rhs)) => { if let mir::Rvalue::Ref(_, _, place) = *rhs { if place.ignore_borrow( self.tcx, self.body, &self.borrow_set.locals_state_at_exit, ) { return; } let index = self.borrow_set.get_index_of(&location).unwrap_or_else(|| { panic!("could not find BorrowIndex for location {:?}", location); }); trans.gen(index); } // Make sure there are no remaining borrows for variables // that are assigned over. self.kill_borrows_on_place(trans, lhs); } mir::StatementKind::StorageDead(local) => { // Make sure there are no remaining borrows for locals that // are gone out of scope. self.kill_borrows_on_place(trans, Place::from(local)); } mir::StatementKind::LlvmInlineAsm(ref asm) => { for (output, kind) in iter::zip(&*asm.outputs, &asm.asm.outputs) { if !kind.is_indirect && !kind.is_rw { self.kill_borrows_on_place(trans, *output); } } } mir::StatementKind::FakeRead(..) | mir::StatementKind::SetDiscriminant { .. } | mir::StatementKind::StorageLive(..) | mir::StatementKind::Retag { .. } | mir::StatementKind::AscribeUserType(..) | mir::StatementKind::Coverage(..) | mir::StatementKind::CopyNonOverlapping(..) | mir::StatementKind::Nop => {} } } fn before_terminator_effect( &self, trans: &mut impl GenKill, _terminator: &mir::Terminator<'tcx>, location: Location, ) { self.kill_loans_out_of_scope_at_location(trans, location); } fn terminator_effect( &self, trans: &mut impl GenKill, teminator: &mir::Terminator<'tcx>, _location: Location, ) { if let mir::TerminatorKind::InlineAsm { operands, .. } = &teminator.kind { for op in operands { if let mir::InlineAsmOperand::Out { place: Some(place), .. } | mir::InlineAsmOperand::InOut { out_place: Some(place), .. } = *op { self.kill_borrows_on_place(trans, place); } } } } fn call_return_effect( &self, _trans: &mut impl GenKill, _block: mir::BasicBlock, _func: &mir::Operand<'tcx>, _args: &[mir::Operand<'tcx>], _dest_place: mir::Place<'tcx>, ) { } } impl DebugWithContext> for BorrowIndex { fn fmt_with(&self, ctxt: &Borrows<'_, '_>, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:?}", ctxt.location(*self)) } }