//! Util methods for [`rustc_middle::ty`] #![allow(clippy::module_name_repetitions)] use rustc_ast::ast::Mutability; use rustc_data_structures::fx::FxHashMap; use rustc_hir as hir; use rustc_hir::def_id::DefId; use rustc_hir::{TyKind, Unsafety}; use rustc_infer::infer::TyCtxtInferExt; use rustc_lint::LateContext; use rustc_middle::ty::subst::{GenericArg, GenericArgKind}; use rustc_middle::ty::{self, AdtDef, IntTy, Ty, TypeFoldable, UintTy}; use rustc_span::sym; use rustc_span::symbol::{Ident, Symbol}; use rustc_span::DUMMY_SP; use rustc_trait_selection::infer::InferCtxtExt; use rustc_trait_selection::traits::query::normalize::AtExt; use crate::{match_def_path, must_use_attr}; pub fn is_copy<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { ty.is_copy_modulo_regions(cx.tcx.at(DUMMY_SP), cx.param_env) } /// Checks whether a type can be partially moved. pub fn can_partially_move_ty(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { if has_drop(cx, ty) || is_copy(cx, ty) { return false; } match ty.kind() { ty::Param(_) => false, ty::Adt(def, subs) => def.all_fields().any(|f| !is_copy(cx, f.ty(cx.tcx, subs))), _ => true, } } /// Walks into `ty` and returns `true` if any inner type is the same as `other_ty` pub fn contains_ty(ty: Ty<'_>, other_ty: Ty<'_>) -> bool { ty.walk().any(|inner| match inner.unpack() { GenericArgKind::Type(inner_ty) => ty::TyS::same_type(other_ty, inner_ty), GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => false, }) } /// Walks into `ty` and returns `true` if any inner type is an instance of the given adt /// constructor. pub fn contains_adt_constructor(ty: Ty<'_>, adt: &AdtDef) -> bool { ty.walk().any(|inner| match inner.unpack() { GenericArgKind::Type(inner_ty) => inner_ty.ty_adt_def() == Some(adt), GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => false, }) } /// Resolves `::Item` for `T` /// Do not invoke without first verifying that the type implements `Iterator` pub fn get_iterator_item_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option> { cx.tcx .get_diagnostic_item(sym::Iterator) .and_then(|iter_did| { cx.tcx.associated_items(iter_did).find_by_name_and_kind( cx.tcx, Ident::from_str("Item"), ty::AssocKind::Type, iter_did, ) }) .map(|assoc| { let proj = cx.tcx.mk_projection(assoc.def_id, cx.tcx.mk_substs_trait(ty, &[])); cx.tcx.normalize_erasing_regions(cx.param_env, proj) }) } /// Returns true if ty has `iter` or `iter_mut` methods pub fn has_iter_method(cx: &LateContext<'_>, probably_ref_ty: Ty<'_>) -> Option { // FIXME: instead of this hard-coded list, we should check if `::iter` // exists and has the desired signature. Unfortunately FnCtxt is not exported // so we can't use its `lookup_method` method. let into_iter_collections: &[Symbol] = &[ sym::vec_type, sym::option_type, sym::result_type, sym::BTreeMap, sym::BTreeSet, sym::vecdeque_type, sym::LinkedList, sym::BinaryHeap, sym::hashset_type, sym::hashmap_type, sym::PathBuf, sym::Path, sym::Receiver, ]; let ty_to_check = match probably_ref_ty.kind() { ty::Ref(_, ty_to_check, _) => ty_to_check, _ => probably_ref_ty, }; let def_id = match ty_to_check.kind() { ty::Array(..) => return Some(sym::array), ty::Slice(..) => return Some(sym::slice), ty::Adt(adt, _) => adt.did, _ => return None, }; for &name in into_iter_collections { if cx.tcx.is_diagnostic_item(name, def_id) { return Some(cx.tcx.item_name(def_id)); } } None } /// Checks whether a type implements a trait. /// The function returns false in case the type contains an inference variable. /// See also `get_trait_def_id`. pub fn implements_trait<'tcx>( cx: &LateContext<'tcx>, ty: Ty<'tcx>, trait_id: DefId, ty_params: &[GenericArg<'tcx>], ) -> bool { // Clippy shouldn't have infer types assert!(!ty.needs_infer()); let ty = cx.tcx.erase_regions(ty); if ty.has_escaping_bound_vars() { return false; } let ty_params = cx.tcx.mk_substs(ty_params.iter()); cx.tcx.infer_ctxt().enter(|infcx| { infcx .type_implements_trait(trait_id, ty, ty_params, cx.param_env) .must_apply_modulo_regions() }) } /// Checks whether this type implements `Drop`. pub fn has_drop<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { match ty.ty_adt_def() { Some(def) => def.has_dtor(cx.tcx), None => false, } } // Returns whether the type has #[must_use] attribute pub fn is_must_use_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { match ty.kind() { ty::Adt(adt, _) => must_use_attr(cx.tcx.get_attrs(adt.did)).is_some(), ty::Foreign(ref did) => must_use_attr(cx.tcx.get_attrs(*did)).is_some(), ty::Slice(ty) | ty::Array(ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => { // for the Array case we don't need to care for the len == 0 case // because we don't want to lint functions returning empty arrays is_must_use_ty(cx, *ty) }, ty::Tuple(substs) => substs.types().any(|ty| is_must_use_ty(cx, ty)), ty::Opaque(ref def_id, _) => { for (predicate, _) in cx.tcx.explicit_item_bounds(*def_id) { if let ty::PredicateKind::Trait(trait_predicate, _) = predicate.kind().skip_binder() { if must_use_attr(cx.tcx.get_attrs(trait_predicate.trait_ref.def_id)).is_some() { return true; } } } false }, ty::Dynamic(binder, _) => { for predicate in binder.iter() { if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate.skip_binder() { if must_use_attr(cx.tcx.get_attrs(trait_ref.def_id)).is_some() { return true; } } } false }, _ => false, } } // FIXME: Per https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/infer/at/struct.At.html#method.normalize // this function can be removed once the `normalizie` method does not panic when normalization does // not succeed /// Checks if `Ty` is normalizable. This function is useful /// to avoid crashes on `layout_of`. pub fn is_normalizable<'tcx>(cx: &LateContext<'tcx>, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool { is_normalizable_helper(cx, param_env, ty, &mut FxHashMap::default()) } fn is_normalizable_helper<'tcx>( cx: &LateContext<'tcx>, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, cache: &mut FxHashMap, bool>, ) -> bool { if let Some(&cached_result) = cache.get(ty) { return cached_result; } // prevent recursive loops, false-negative is better than endless loop leading to stack overflow cache.insert(ty, false); let result = cx.tcx.infer_ctxt().enter(|infcx| { let cause = rustc_middle::traits::ObligationCause::dummy(); if infcx.at(&cause, param_env).normalize(ty).is_ok() { match ty.kind() { ty::Adt(def, substs) => def.variants.iter().all(|variant| { variant .fields .iter() .all(|field| is_normalizable_helper(cx, param_env, field.ty(cx.tcx, substs), cache)) }), _ => ty.walk().all(|generic_arg| match generic_arg.unpack() { GenericArgKind::Type(inner_ty) if inner_ty != ty => { is_normalizable_helper(cx, param_env, inner_ty, cache) }, _ => true, // if inner_ty == ty, we've already checked it }), } } else { false } }); cache.insert(ty, result); result } /// Returns true iff the given type is a primitive (a bool or char, any integer or floating-point /// number type, a str, or an array, slice, or tuple of those types). pub fn is_recursively_primitive_type(ty: Ty<'_>) -> bool { match ty.kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str => true, ty::Ref(_, inner, _) if *inner.kind() == ty::Str => true, ty::Array(inner_type, _) | ty::Slice(inner_type) => is_recursively_primitive_type(inner_type), ty::Tuple(inner_types) => inner_types.types().all(is_recursively_primitive_type), _ => false, } } /// Checks if the type is a reference equals to a diagnostic item pub fn is_type_ref_to_diagnostic_item(cx: &LateContext<'_>, ty: Ty<'_>, diag_item: Symbol) -> bool { match ty.kind() { ty::Ref(_, ref_ty, _) => match ref_ty.kind() { ty::Adt(adt, _) => cx.tcx.is_diagnostic_item(diag_item, adt.did), _ => false, }, _ => false, } } /// Checks if the type is equal to a diagnostic item /// /// If you change the signature, remember to update the internal lint `MatchTypeOnDiagItem` pub fn is_type_diagnostic_item(cx: &LateContext<'_>, ty: Ty<'_>, diag_item: Symbol) -> bool { match ty.kind() { ty::Adt(adt, _) => cx.tcx.is_diagnostic_item(diag_item, adt.did), _ => false, } } /// Checks if the type is equal to a lang item. /// /// Returns `false` if the `LangItem` is not defined. pub fn is_type_lang_item(cx: &LateContext<'_>, ty: Ty<'_>, lang_item: hir::LangItem) -> bool { match ty.kind() { ty::Adt(adt, _) => cx.tcx.lang_items().require(lang_item).map_or(false, |li| li == adt.did), _ => false, } } /// Return `true` if the passed `typ` is `isize` or `usize`. pub fn is_isize_or_usize(typ: Ty<'_>) -> bool { matches!(typ.kind(), ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize)) } /// Checks if type is struct, enum or union type with the given def path. /// /// If the type is a diagnostic item, use `is_type_diagnostic_item` instead. /// If you change the signature, remember to update the internal lint `MatchTypeOnDiagItem` pub fn match_type(cx: &LateContext<'_>, ty: Ty<'_>, path: &[&str]) -> bool { match ty.kind() { ty::Adt(adt, _) => match_def_path(cx, adt.did, path), _ => false, } } /// Peels off all references on the type. Returns the underlying type and the number of references /// removed. pub fn peel_mid_ty_refs(ty: Ty<'_>) -> (Ty<'_>, usize) { fn peel(ty: Ty<'_>, count: usize) -> (Ty<'_>, usize) { if let ty::Ref(_, ty, _) = ty.kind() { peel(ty, count + 1) } else { (ty, count) } } peel(ty, 0) } /// Peels off all references on the type.Returns the underlying type, the number of references /// removed, and whether the pointer is ultimately mutable or not. pub fn peel_mid_ty_refs_is_mutable(ty: Ty<'_>) -> (Ty<'_>, usize, Mutability) { fn f(ty: Ty<'_>, count: usize, mutability: Mutability) -> (Ty<'_>, usize, Mutability) { match ty.kind() { ty::Ref(_, ty, Mutability::Mut) => f(ty, count + 1, mutability), ty::Ref(_, ty, Mutability::Not) => f(ty, count + 1, Mutability::Not), _ => (ty, count, mutability), } } f(ty, 0, Mutability::Mut) } /// Returns `true` if the given type is an `unsafe` function. pub fn type_is_unsafe_function<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool { match ty.kind() { ty::FnDef(..) | ty::FnPtr(_) => ty.fn_sig(cx.tcx).unsafety() == Unsafety::Unsafe, _ => false, } } /// Returns the base type for HIR references and pointers. pub fn walk_ptrs_hir_ty<'tcx>(ty: &'tcx hir::Ty<'tcx>) -> &'tcx hir::Ty<'tcx> { match ty.kind { TyKind::Ptr(ref mut_ty) | TyKind::Rptr(_, ref mut_ty) => walk_ptrs_hir_ty(mut_ty.ty), _ => ty, } } /// Returns the base type for references and raw pointers, and count reference /// depth. pub fn walk_ptrs_ty_depth(ty: Ty<'_>) -> (Ty<'_>, usize) { fn inner(ty: Ty<'_>, depth: usize) -> (Ty<'_>, usize) { match ty.kind() { ty::Ref(_, ty, _) => inner(ty, depth + 1), _ => (ty, depth), } } inner(ty, 0) } /// Returns `true` if types `a` and `b` are same types having same `Const` generic args, /// otherwise returns `false` pub fn same_type_and_consts(a: Ty<'tcx>, b: Ty<'tcx>) -> bool { match (&a.kind(), &b.kind()) { (&ty::Adt(did_a, substs_a), &ty::Adt(did_b, substs_b)) => { if did_a != did_b { return false; } substs_a .iter() .zip(substs_b.iter()) .all(|(arg_a, arg_b)| match (arg_a.unpack(), arg_b.unpack()) { (GenericArgKind::Const(inner_a), GenericArgKind::Const(inner_b)) => inner_a == inner_b, (GenericArgKind::Type(type_a), GenericArgKind::Type(type_b)) => { same_type_and_consts(type_a, type_b) }, _ => true, }) }, _ => a == b, } }