use byteorder::{ByteOrder, NativeEndian, ReadBytesExt, WriteBytesExt}; use std::collections::Bound::{Included, Excluded}; use std::collections::{btree_map, BTreeMap, HashMap, HashSet, VecDeque}; use std::{fmt, iter, mem, ptr}; use error::{EvalError, EvalResult}; use primval::PrimVal; //////////////////////////////////////////////////////////////////////////////// // Value representations //////////////////////////////////////////////////////////////////////////////// #[derive(Clone, Debug, Eq, PartialEq)] pub enum Repr { /// Representation for a non-aggregate type such as a boolean, integer, character or pointer. Primitive { size: usize }, /// The representation for aggregate types including structs, enums, and tuples. Aggregate { /// The size of the discriminant (an integer). Should be between 0 and 8. Always 0 for /// structs and tuples. discr_size: usize, /// The size of the entire aggregate, including the discriminant. size: usize, /// The representations of the contents of each variant. variants: Vec>, }, Array { elem_size: usize, /// Number of elements. length: usize, }, } #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub struct FieldRepr { pub offset: usize, pub size: usize, } impl Repr { pub fn size(&self) -> usize { match *self { Repr::Primitive { size } => size, Repr::Aggregate { size, .. } => size, Repr::Array { elem_size, length } => elem_size * length, } } } //////////////////////////////////////////////////////////////////////////////// // Allocations and pointers //////////////////////////////////////////////////////////////////////////////// #[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)] pub struct AllocId(u64); impl fmt::Display for AllocId { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.0) } } #[derive(Debug)] pub struct Allocation { pub bytes: Vec, pub relocations: BTreeMap, pub undef_mask: UndefMask, } #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub struct Pointer { pub alloc_id: AllocId, pub offset: usize, } impl Pointer { pub fn offset(self, i: isize) -> Self { Pointer { offset: (self.offset as isize + i) as usize, ..self } } } //////////////////////////////////////////////////////////////////////////////// // Top-level interpreter memory //////////////////////////////////////////////////////////////////////////////// pub struct Memory { alloc_map: HashMap, next_id: AllocId, pub pointer_size: usize, } impl Memory { pub fn new() -> Self { Memory { alloc_map: HashMap::new(), next_id: AllocId(0), // TODO(tsion): Should this be host's or target's usize? pointer_size: mem::size_of::(), } } pub fn allocate(&mut self, size: usize) -> Pointer { let alloc = Allocation { bytes: vec![0; size], relocations: BTreeMap::new(), undef_mask: UndefMask::new(size), }; let id = self.next_id; self.next_id.0 += 1; self.alloc_map.insert(id, alloc); Pointer { alloc_id: id, offset: 0, } } // TODO(tsion): Track which allocations were returned from __rust_allocate and report an error // when reallocating/deallocating any others. pub fn reallocate(&mut self, ptr: Pointer, new_size: usize) -> EvalResult<()> { if ptr.offset != 0 { // TODO(tsion): Report error about non-__rust_allocate'd pointer. panic!() } let alloc = try!(self.get_mut(ptr.alloc_id)); let size = alloc.bytes.len(); if new_size > size { let amount = new_size - size; alloc.bytes.extend(iter::repeat(0).take(amount)); alloc.undef_mask.grow(amount, false); } else if size > new_size { unimplemented!() // alloc.bytes.truncate(new_size); // alloc.undef_mask.len = new_size; // TODO: potentially remove relocations } Ok(()) } // TODO(tsion): See comment on `reallocate`. pub fn deallocate(&mut self, ptr: Pointer) -> EvalResult<()> { if ptr.offset != 0 { // TODO(tsion): Report error about non-__rust_allocate'd pointer. panic!() } if self.alloc_map.remove(&ptr.alloc_id).is_none() { // TODO(tsion): Report error about erroneous free. This is blocked on properly tracking // already-dropped state since this if-statement is entered even in safe code without // it. } Ok(()) } //////////////////////////////////////////////////////////////////////////////// // Allocation accessors //////////////////////////////////////////////////////////////////////////////// pub fn get(&self, id: AllocId) -> EvalResult<&Allocation> { self.alloc_map.get(&id).ok_or(EvalError::DanglingPointerDeref) } pub fn get_mut(&mut self, id: AllocId) -> EvalResult<&mut Allocation> { self.alloc_map.get_mut(&id).ok_or(EvalError::DanglingPointerDeref) } /// Print an allocation and all allocations it points to, recursively. pub fn dump(&self, id: AllocId) { let mut allocs_seen = HashSet::new(); let mut allocs_to_print = VecDeque::new(); allocs_to_print.push_back(id); while let Some(id) = allocs_to_print.pop_front() { allocs_seen.insert(id); let prefix = format!("Alloc {:<5} ", format!("{}:", id)); print!("{}", prefix); let mut relocations = vec![]; let alloc = match self.alloc_map.get(&id) { Some(a) => a, None => { println!("(deallocated)"); continue; } }; for i in 0..alloc.bytes.len() { if let Some(&target_id) = alloc.relocations.get(&i) { if !allocs_seen.contains(&target_id) { allocs_to_print.push_back(target_id); } relocations.push((i, target_id)); } if alloc.undef_mask.is_range_defined(i, i + 1) { print!("{:02x} ", alloc.bytes[i]); } else { print!("__ "); } } println!("({} bytes)", alloc.bytes.len()); if !relocations.is_empty() { print!("{:1$}", "", prefix.len()); // Print spaces. let mut pos = 0; let relocation_width = (self.pointer_size - 1) * 3; for (i, target_id) in relocations { print!("{:1$}", "", (i - pos) * 3); print!("└{0:─^1$}┘ ", format!("({})", target_id), relocation_width); pos = i + self.pointer_size; } println!(""); } } } //////////////////////////////////////////////////////////////////////////////// // Byte accessors //////////////////////////////////////////////////////////////////////////////// fn get_bytes_unchecked(&self, ptr: Pointer, size: usize) -> EvalResult<&[u8]> { let alloc = try!(self.get(ptr.alloc_id)); if ptr.offset + size > alloc.bytes.len() { return Err(EvalError::PointerOutOfBounds); } Ok(&alloc.bytes[ptr.offset..ptr.offset + size]) } fn get_bytes_unchecked_mut(&mut self, ptr: Pointer, size: usize) -> EvalResult<&mut [u8]> { let alloc = try!(self.get_mut(ptr.alloc_id)); if ptr.offset + size > alloc.bytes.len() { return Err(EvalError::PointerOutOfBounds); } Ok(&mut alloc.bytes[ptr.offset..ptr.offset + size]) } fn get_bytes(&self, ptr: Pointer, size: usize) -> EvalResult<&[u8]> { if try!(self.relocations(ptr, size)).count() != 0 { return Err(EvalError::ReadPointerAsBytes); } try!(self.check_defined(ptr, size)); self.get_bytes_unchecked(ptr, size) } fn get_bytes_mut(&mut self, ptr: Pointer, size: usize) -> EvalResult<&mut [u8]> { try!(self.clear_relocations(ptr, size)); try!(self.mark_definedness(ptr, size, true)); self.get_bytes_unchecked_mut(ptr, size) } //////////////////////////////////////////////////////////////////////////////// // Reading and writing //////////////////////////////////////////////////////////////////////////////// pub fn copy(&mut self, src: Pointer, dest: Pointer, size: usize) -> EvalResult<()> { try!(self.check_relocation_edges(src, size)); let src_bytes = try!(self.get_bytes_unchecked_mut(src, size)).as_mut_ptr(); let dest_bytes = try!(self.get_bytes_mut(dest, size)).as_mut_ptr(); // SAFE: The above indexing would have panicked if there weren't at least `size` bytes // behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and // `dest` could possibly overlap. unsafe { if src.alloc_id == dest.alloc_id { ptr::copy(src_bytes, dest_bytes, size); } else { ptr::copy_nonoverlapping(src_bytes, dest_bytes, size); } } try!(self.copy_undef_mask(src, dest, size)); try!(self.copy_relocations(src, dest, size)); Ok(()) } pub fn write_bytes(&mut self, ptr: Pointer, src: &[u8]) -> EvalResult<()> { let bytes = try!(self.get_bytes_mut(ptr, src.len())); bytes.clone_from_slice(src); Ok(()) } pub fn write_repeat(&mut self, ptr: Pointer, val: u8, count: usize) -> EvalResult<()> { let bytes = try!(self.get_bytes_mut(ptr, count)); for b in bytes { *b = val; } Ok(()) } pub fn drop_fill(&mut self, ptr: Pointer, size: usize) -> EvalResult<()> { self.write_repeat(ptr, mem::POST_DROP_U8, size) } pub fn read_ptr(&self, ptr: Pointer) -> EvalResult { let size = self.pointer_size; try!(self.check_defined(ptr, size)); let offset = try!(self.get_bytes_unchecked(ptr, size)) .read_uint::(size).unwrap() as usize; let alloc = try!(self.get(ptr.alloc_id)); match alloc.relocations.get(&ptr.offset) { Some(&alloc_id) => Ok(Pointer { alloc_id: alloc_id, offset: offset }), None => Err(EvalError::ReadBytesAsPointer), } } pub fn write_ptr(&mut self, dest: Pointer, ptr: Pointer) -> EvalResult<()> { { let size = self.pointer_size; let mut bytes = try!(self.get_bytes_mut(dest, size)); bytes.write_uint::(ptr.offset as u64, size).unwrap(); } try!(self.get_mut(dest.alloc_id)).relocations.insert(dest.offset, ptr.alloc_id); Ok(()) } pub fn write_primval(&mut self, ptr: Pointer, val: PrimVal) -> EvalResult<()> { let pointer_size = self.pointer_size; match val { PrimVal::Bool(b) => self.write_bool(ptr, b), PrimVal::I8(n) => self.write_int(ptr, n as i64, 1), PrimVal::I16(n) => self.write_int(ptr, n as i64, 2), PrimVal::I32(n) => self.write_int(ptr, n as i64, 4), PrimVal::I64(n) => self.write_int(ptr, n as i64, 8), PrimVal::U8(n) => self.write_uint(ptr, n as u64, 1), PrimVal::U16(n) => self.write_uint(ptr, n as u64, 2), PrimVal::U32(n) => self.write_uint(ptr, n as u64, 4), PrimVal::U64(n) => self.write_uint(ptr, n as u64, 8), PrimVal::IntegerPtr(n) => self.write_uint(ptr, n as u64, pointer_size), PrimVal::AbstractPtr(_p) => unimplemented!(), } } pub fn read_bool(&self, ptr: Pointer) -> EvalResult { let bytes = try!(self.get_bytes(ptr, 1)); match bytes[0] { 0 => Ok(false), 1 => Ok(true), _ => Err(EvalError::InvalidBool), } } pub fn write_bool(&mut self, ptr: Pointer, b: bool) -> EvalResult<()> { self.get_bytes_mut(ptr, 1).map(|bytes| bytes[0] = b as u8) } pub fn read_int(&self, ptr: Pointer, size: usize) -> EvalResult { self.get_bytes(ptr, size).map(|mut b| b.read_int::(size).unwrap()) } pub fn write_int(&mut self, ptr: Pointer, n: i64, size: usize) -> EvalResult<()> { self.get_bytes_mut(ptr, size).map(|mut b| b.write_int::(n, size).unwrap()) } pub fn read_uint(&self, ptr: Pointer, size: usize) -> EvalResult { self.get_bytes(ptr, size).map(|mut b| b.read_uint::(size).unwrap()) } pub fn write_uint(&mut self, ptr: Pointer, n: u64, size: usize) -> EvalResult<()> { self.get_bytes_mut(ptr, size).map(|mut b| b.write_uint::(n, size).unwrap()) } pub fn read_isize(&self, ptr: Pointer) -> EvalResult { self.read_int(ptr, self.pointer_size) } pub fn write_isize(&mut self, ptr: Pointer, n: i64) -> EvalResult<()> { let size = self.pointer_size; self.write_int(ptr, n, size) } pub fn read_usize(&self, ptr: Pointer) -> EvalResult { self.read_uint(ptr, self.pointer_size) } pub fn write_usize(&mut self, ptr: Pointer, n: u64) -> EvalResult<()> { let size = self.pointer_size; self.write_uint(ptr, n, size) } //////////////////////////////////////////////////////////////////////////////// // Relocations //////////////////////////////////////////////////////////////////////////////// fn relocations(&self, ptr: Pointer, size: usize) -> EvalResult> { let start = ptr.offset.saturating_sub(self.pointer_size - 1); let end = start + size; Ok(try!(self.get(ptr.alloc_id)).relocations.range(Included(&start), Excluded(&end))) } fn clear_relocations(&mut self, ptr: Pointer, size: usize) -> EvalResult<()> { // Find all relocations overlapping the given range. let keys: Vec<_> = try!(self.relocations(ptr, size)).map(|(&k, _)| k).collect(); if keys.len() == 0 { return Ok(()); } // Find the start and end of the given range and its outermost relocations. let start = ptr.offset; let end = start + size; let first = *keys.first().unwrap(); let last = *keys.last().unwrap() + self.pointer_size; let alloc = try!(self.get_mut(ptr.alloc_id)); // Mark parts of the outermost relocations as undefined if they partially fall outside the // given range. if first < start { alloc.undef_mask.set_range(first, start, false); } if last > end { alloc.undef_mask.set_range(end, last, false); } // Forget all the relocations. for k in keys { alloc.relocations.remove(&k); } Ok(()) } fn check_relocation_edges(&self, ptr: Pointer, size: usize) -> EvalResult<()> { let overlapping_start = try!(self.relocations(ptr, 0)).count(); let overlapping_end = try!(self.relocations(ptr.offset(size as isize), 0)).count(); if overlapping_start + overlapping_end != 0 { return Err(EvalError::ReadPointerAsBytes); } Ok(()) } fn copy_relocations(&mut self, src: Pointer, dest: Pointer, size: usize) -> EvalResult<()> { let relocations: Vec<_> = try!(self.relocations(src, size)) .map(|(&offset, &alloc_id)| { // Update relocation offsets for the new positions in the destination allocation. (offset + dest.offset - src.offset, alloc_id) }) .collect(); try!(self.get_mut(dest.alloc_id)).relocations.extend(relocations); Ok(()) } //////////////////////////////////////////////////////////////////////////////// // Undefined bytes //////////////////////////////////////////////////////////////////////////////// // FIXME(tsino): This is a very naive, slow version. fn copy_undef_mask(&mut self, src: Pointer, dest: Pointer, size: usize) -> EvalResult<()> { // The bits have to be saved locally before writing to dest in case src and dest overlap. let mut v = Vec::with_capacity(size); for i in 0..size { let defined = try!(self.get(src.alloc_id)).undef_mask.get(src.offset + i); v.push(defined); } for (i, defined) in v.into_iter().enumerate() { try!(self.get_mut(dest.alloc_id)).undef_mask.set(dest.offset + i, defined); } Ok(()) } fn check_defined(&self, ptr: Pointer, size: usize) -> EvalResult<()> { let alloc = try!(self.get(ptr.alloc_id)); if !alloc.undef_mask.is_range_defined(ptr.offset, ptr.offset + size) { return Err(EvalError::ReadUndefBytes); } Ok(()) } pub fn mark_definedness(&mut self, ptr: Pointer, size: usize, new_state: bool) -> EvalResult<()> { let mut alloc = try!(self.get_mut(ptr.alloc_id)); alloc.undef_mask.set_range(ptr.offset, ptr.offset + size, new_state); Ok(()) } } //////////////////////////////////////////////////////////////////////////////// // Undefined byte tracking //////////////////////////////////////////////////////////////////////////////// type Block = u64; const BLOCK_SIZE: usize = 64; #[derive(Clone, Debug)] pub struct UndefMask { blocks: Vec, len: usize, } impl UndefMask { fn new(size: usize) -> Self { let mut m = UndefMask { blocks: vec![], len: 0, }; m.grow(size, false); m } /// Check whether the range `start..end` (end-exclusive) is entirely defined. fn is_range_defined(&self, start: usize, end: usize) -> bool { if end > self.len { return false; } for i in start..end { if !self.get(i) { return false; } } true } fn set_range(&mut self, start: usize, end: usize, new_state: bool) { let len = self.len; if end > len { self.grow(end - len, new_state); } self.set_range_inbounds(start, end, new_state); } fn set_range_inbounds(&mut self, start: usize, end: usize, new_state: bool) { for i in start..end { self.set(i, new_state); } } fn get(&self, i: usize) -> bool { let (block, bit) = bit_index(i); (self.blocks[block] & 1 << bit) != 0 } fn set(&mut self, i: usize, new_state: bool) { let (block, bit) = bit_index(i); if new_state { self.blocks[block] |= 1 << bit; } else { self.blocks[block] &= !(1 << bit); } } fn grow(&mut self, amount: usize, new_state: bool) { let unused_trailing_bits = self.blocks.len() * BLOCK_SIZE - self.len; if amount > unused_trailing_bits { let additional_blocks = amount / BLOCK_SIZE + 1; self.blocks.extend(iter::repeat(0).take(additional_blocks)); } let start = self.len; self.len += amount; self.set_range_inbounds(start, start + amount, new_state); } } // fn uniform_block(state: bool) -> Block { // if state { !0 } else { 0 } // } fn bit_index(bits: usize) -> (usize, usize) { (bits / BLOCK_SIZE, bits % BLOCK_SIZE) }