use rustc::hir::*; use rustc::lint::*; use syntax::ast::LitKind; use syntax::codemap::Span; use crate::utils::{span_lint, span_lint_and_then}; use crate::utils::sugg::Sugg; use crate::consts::{constant, Constant}; /// **What it does:** Checks for incompatible bit masks in comparisons. /// /// The formula for detecting if an expression of the type `_ m /// c` (where `` is one of {`&`, `|`} and `` is one of /// {`!=`, `>=`, `>`, `!=`, `>=`, `>`}) can be determined from the following /// table: /// /// |Comparison |Bit Op|Example |is always|Formula | /// |------------|------|------------|---------|----------------------| /// |`==` or `!=`| `&` |`x & 2 == 3`|`false` |`c & m != c` | /// |`<` or `>=`| `&` |`x & 2 < 3` |`true` |`m < c` | /// |`>` or `<=`| `&` |`x & 1 > 1` |`false` |`m <= c` | /// |`==` or `!=`| `|` |`x | 1 == 0`|`false` |`c | m != c` | /// |`<` or `>=`| `|` |`x | 1 < 1` |`false` |`m >= c` | /// |`<=` or `>` | `|` |`x | 1 > 0` |`true` |`m > c` | /// /// **Why is this bad?** If the bits that the comparison cares about are always /// set to zero or one by the bit mask, the comparison is constant `true` or /// `false` (depending on mask, compared value, and operators). /// /// So the code is actively misleading, and the only reason someone would write /// this intentionally is to win an underhanded Rust contest or create a /// test-case for this lint. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// if (x & 1 == 2) { … } /// ``` declare_clippy_lint! { pub BAD_BIT_MASK, correctness, "expressions of the form `_ & mask == select` that will only ever return `true` or `false`" } /// **What it does:** Checks for bit masks in comparisons which can be removed /// without changing the outcome. The basic structure can be seen in the /// following table: /// /// |Comparison| Bit Op |Example |equals | /// |----------|---------|-----------|-------| /// |`>` / `<=`|`|` / `^`|`x | 2 > 3`|`x > 3`| /// |`<` / `>=`|`|` / `^`|`x ^ 1 < 4`|`x < 4`| /// /// **Why is this bad?** Not equally evil as [`bad_bit_mask`](#bad_bit_mask), /// but still a bit misleading, because the bit mask is ineffective. /// /// **Known problems:** False negatives: This lint will only match instances /// where we have figured out the math (which is for a power-of-two compared /// value). This means things like `x | 1 >= 7` (which would be better written /// as `x >= 6`) will not be reported (but bit masks like this are fairly /// uncommon). /// /// **Example:** /// ```rust /// if (x | 1 > 3) { … } /// ``` declare_clippy_lint! { pub INEFFECTIVE_BIT_MASK, correctness, "expressions where a bit mask will be rendered useless by a comparison, e.g. `(x | 1) > 2`" } /// **What it does:** Checks for bit masks that can be replaced by a call /// to `trailing_zeros` /// /// **Why is this bad?** `x.trailing_zeros() > 4` is much clearer than `x & 15 /// == 0` /// /// **Known problems:** llvm generates better code for `x & 15 == 0` on x86 /// /// **Example:** /// ```rust /// x & 0x1111 == 0 /// ``` declare_clippy_lint! { pub VERBOSE_BIT_MASK, style, "expressions where a bit mask is less readable than the corresponding method call" } #[derive(Copy, Clone)] pub struct BitMask { verbose_bit_mask_threshold: u64, } impl BitMask { pub fn new(verbose_bit_mask_threshold: u64) -> Self { Self { verbose_bit_mask_threshold, } } } impl LintPass for BitMask { fn get_lints(&self) -> LintArray { lint_array!(BAD_BIT_MASK, INEFFECTIVE_BIT_MASK, VERBOSE_BIT_MASK) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for BitMask { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, e: &'tcx Expr) { if let ExprKind::Binary(ref cmp, ref left, ref right) = e.node { if cmp.node.is_comparison() { if let Some(cmp_opt) = fetch_int_literal(cx, right) { check_compare(cx, left, cmp.node, cmp_opt, e.span) } else if let Some(cmp_val) = fetch_int_literal(cx, left) { check_compare(cx, right, invert_cmp(cmp.node), cmp_val, e.span) } } } if_chain! { if let ExprKind::Binary(ref op, ref left, ref right) = e.node; if BinOpKind::Eq == op.node; if let ExprKind::Binary(ref op1, ref left1, ref right1) = left.node; if BinOpKind::BitAnd == op1.node; if let ExprKind::Lit(ref lit) = right1.node; if let LitKind::Int(n, _) = lit.node; if let ExprKind::Lit(ref lit1) = right.node; if let LitKind::Int(0, _) = lit1.node; if n.leading_zeros() == n.count_zeros(); if n > u128::from(self.verbose_bit_mask_threshold); then { span_lint_and_then(cx, VERBOSE_BIT_MASK, e.span, "bit mask could be simplified with a call to `trailing_zeros`", |db| { let sugg = Sugg::hir(cx, left1, "...").maybe_par(); db.span_suggestion(e.span, "try", format!("{}.trailing_zeros() >= {}", sugg, n.count_ones())); }); } } } } fn invert_cmp(cmp: BinOpKind) -> BinOpKind { match cmp { BinOpKind::Eq => BinOpKind::Eq, BinOpKind::Ne => BinOpKind::Ne, BinOpKind::Lt => BinOpKind::Gt, BinOpKind::Gt => BinOpKind::Lt, BinOpKind::Le => BinOpKind::Ge, BinOpKind::Ge => BinOpKind::Le, _ => BinOpKind::Or, // Dummy } } fn check_compare(cx: &LateContext, bit_op: &Expr, cmp_op: BinOpKind, cmp_value: u128, span: Span) { if let ExprKind::Binary(ref op, ref left, ref right) = bit_op.node { if op.node != BinOpKind::BitAnd && op.node != BinOpKind::BitOr { return; } fetch_int_literal(cx, right) .or_else(|| fetch_int_literal(cx, left)) .map_or((), |mask| check_bit_mask(cx, op.node, cmp_op, mask, cmp_value, span)) } } fn check_bit_mask(cx: &LateContext, bit_op: BinOpKind, cmp_op: BinOpKind, mask_value: u128, cmp_value: u128, span: Span) { match cmp_op { BinOpKind::Eq | BinOpKind::Ne => match bit_op { BinOpKind::BitAnd => if mask_value & cmp_value != cmp_value { if cmp_value != 0 { span_lint( cx, BAD_BIT_MASK, span, &format!( "incompatible bit mask: `_ & {}` can never be equal to `{}`", mask_value, cmp_value ), ); } } else if mask_value == 0 { span_lint(cx, BAD_BIT_MASK, span, "&-masking with zero"); }, BinOpKind::BitOr => if mask_value | cmp_value != cmp_value { span_lint( cx, BAD_BIT_MASK, span, &format!( "incompatible bit mask: `_ | {}` can never be equal to `{}`", mask_value, cmp_value ), ); }, _ => (), }, BinOpKind::Lt | BinOpKind::Ge => match bit_op { BinOpKind::BitAnd => if mask_value < cmp_value { span_lint( cx, BAD_BIT_MASK, span, &format!( "incompatible bit mask: `_ & {}` will always be lower than `{}`", mask_value, cmp_value ), ); } else if mask_value == 0 { span_lint(cx, BAD_BIT_MASK, span, "&-masking with zero"); }, BinOpKind::BitOr => if mask_value >= cmp_value { span_lint( cx, BAD_BIT_MASK, span, &format!( "incompatible bit mask: `_ | {}` will never be lower than `{}`", mask_value, cmp_value ), ); } else { check_ineffective_lt(cx, span, mask_value, cmp_value, "|"); }, BinOpKind::BitXor => check_ineffective_lt(cx, span, mask_value, cmp_value, "^"), _ => (), }, BinOpKind::Le | BinOpKind::Gt => match bit_op { BinOpKind::BitAnd => if mask_value <= cmp_value { span_lint( cx, BAD_BIT_MASK, span, &format!( "incompatible bit mask: `_ & {}` will never be higher than `{}`", mask_value, cmp_value ), ); } else if mask_value == 0 { span_lint(cx, BAD_BIT_MASK, span, "&-masking with zero"); }, BinOpKind::BitOr => if mask_value > cmp_value { span_lint( cx, BAD_BIT_MASK, span, &format!( "incompatible bit mask: `_ | {}` will always be higher than `{}`", mask_value, cmp_value ), ); } else { check_ineffective_gt(cx, span, mask_value, cmp_value, "|"); }, BinOpKind::BitXor => check_ineffective_gt(cx, span, mask_value, cmp_value, "^"), _ => (), }, _ => (), } } fn check_ineffective_lt(cx: &LateContext, span: Span, m: u128, c: u128, op: &str) { if c.is_power_of_two() && m < c { span_lint( cx, INEFFECTIVE_BIT_MASK, span, &format!( "ineffective bit mask: `x {} {}` compared to `{}`, is the same as x compared directly", op, m, c ), ); } } fn check_ineffective_gt(cx: &LateContext, span: Span, m: u128, c: u128, op: &str) { if (c + 1).is_power_of_two() && m <= c { span_lint( cx, INEFFECTIVE_BIT_MASK, span, &format!( "ineffective bit mask: `x {} {}` compared to `{}`, is the same as x compared directly", op, m, c ), ); } } fn fetch_int_literal(cx: &LateContext, lit: &Expr) -> Option { match constant(cx, cx.tables, lit)?.0 { Constant::Int(n) => Some(n), _ => None, } }