//@ compile-flags: -Zmir-opt-level=0 //@ run-pass // This tests the float classification functions, for regular runtime code and for const evaluation. #![feature(f16)] #![feature(f128)] #![allow(unused_macro_rules)] use std::hint::black_box; macro_rules! both_assert { ($a:expr) => { { const _: () = assert!($a); // `black_box` prevents promotion, and MIR opts are disabled above, so this is truly // going through LLVM. assert!(black_box($a)); } }; ($a:expr, $b:expr) => { { const _: () = assert!($a == $b); assert_eq!(black_box($a), black_box($b)); } }; } fn has_broken_floats() -> bool { // i586 targets are broken due to . cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) } #[cfg(target_arch = "x86_64")] fn f16(){ both_assert!((1f16).to_bits(), 0x3c00); both_assert!(u16::from_be_bytes(1f16.to_be_bytes()), 0x3c00); both_assert!((12.5f16).to_bits(), 0x4a40); both_assert!(u16::from_le_bytes(12.5f16.to_le_bytes()), 0x4a40); both_assert!((1337f16).to_bits(), 0x6539); both_assert!(u16::from_ne_bytes(1337f16.to_ne_bytes()), 0x6539); both_assert!((-14.25f16).to_bits(), 0xcb20); both_assert!(f16::from_bits(0x3c00), 1.0); both_assert!(f16::from_be_bytes(0x3c00u16.to_be_bytes()), 1.0); both_assert!(f16::from_bits(0x4a40), 12.5); both_assert!(f16::from_le_bytes(0x4a40u16.to_le_bytes()), 12.5); both_assert!(f16::from_bits(0x5be0), 252.0); both_assert!(f16::from_ne_bytes(0x5be0u16.to_ne_bytes()), 252.0); both_assert!(f16::from_bits(0xcb20), -14.25); // Check that NaNs roundtrip their bits regardless of signalingness // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! const QUIET_NAN: u16 = f16::NAN.to_bits() ^ 0x0155; const SIGNALING_NAN: u16 = f16::NAN.to_bits() ^ 0x02AA; both_assert!(f16::from_bits(QUIET_NAN).is_nan()); both_assert!(f16::from_bits(SIGNALING_NAN).is_nan()); both_assert!(f16::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); if !has_broken_floats() { both_assert!(f16::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); } } fn f32() { both_assert!((1f32).to_bits(), 0x3f800000); both_assert!(u32::from_be_bytes(1f32.to_be_bytes()), 0x3f800000); both_assert!((12.5f32).to_bits(), 0x41480000); both_assert!(u32::from_le_bytes(12.5f32.to_le_bytes()), 0x41480000); both_assert!((1337f32).to_bits(), 0x44a72000); both_assert!(u32::from_ne_bytes(1337f32.to_ne_bytes()), 0x44a72000); both_assert!((-14.25f32).to_bits(), 0xc1640000); both_assert!(f32::from_bits(0x3f800000), 1.0); both_assert!(f32::from_be_bytes(0x3f800000u32.to_be_bytes()), 1.0); both_assert!(f32::from_bits(0x41480000), 12.5); both_assert!(f32::from_le_bytes(0x41480000u32.to_le_bytes()), 12.5); both_assert!(f32::from_bits(0x44a72000), 1337.0); both_assert!(f32::from_ne_bytes(0x44a72000u32.to_ne_bytes()), 1337.0); both_assert!(f32::from_bits(0xc1640000), -14.25); // Check that NaNs roundtrip their bits regardless of signalingness // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! const QUIET_NAN: u32 = f32::NAN.to_bits() ^ 0x002A_AAAA; const SIGNALING_NAN: u32 = f32::NAN.to_bits() ^ 0x0055_5555; both_assert!(f32::from_bits(QUIET_NAN).is_nan()); both_assert!(f32::from_bits(SIGNALING_NAN).is_nan()); both_assert!(f32::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); if !has_broken_floats() { both_assert!(f32::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); } } fn f64() { both_assert!((1f64).to_bits(), 0x3ff0000000000000); both_assert!(u64::from_be_bytes(1f64.to_be_bytes()), 0x3ff0000000000000); both_assert!((12.5f64).to_bits(), 0x4029000000000000); both_assert!(u64::from_le_bytes(12.5f64.to_le_bytes()), 0x4029000000000000); both_assert!((1337f64).to_bits(), 0x4094e40000000000); both_assert!(u64::from_ne_bytes(1337f64.to_ne_bytes()), 0x4094e40000000000); both_assert!((-14.25f64).to_bits(), 0xc02c800000000000); both_assert!(f64::from_bits(0x3ff0000000000000), 1.0); both_assert!(f64::from_be_bytes(0x3ff0000000000000u64.to_be_bytes()), 1.0); both_assert!(f64::from_bits(0x4029000000000000), 12.5); both_assert!(f64::from_le_bytes(0x4029000000000000u64.to_le_bytes()), 12.5); both_assert!(f64::from_bits(0x4094e40000000000), 1337.0); both_assert!(f64::from_ne_bytes(0x4094e40000000000u64.to_ne_bytes()), 1337.0); both_assert!(f64::from_bits(0xc02c800000000000), -14.25); // Check that NaNs roundtrip their bits regardless of signalingness // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! const QUIET_NAN: u64 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555; const SIGNALING_NAN: u64 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA; both_assert!(f64::from_bits(QUIET_NAN).is_nan()); both_assert!(f64::from_bits(SIGNALING_NAN).is_nan()); both_assert!(f64::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); if !has_broken_floats() { both_assert!(f64::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); } } #[cfg(target_arch = "x86_64")] fn f128() { both_assert!((1f128).to_bits(), 0x3fff0000000000000000000000000000); both_assert!(u128::from_be_bytes(1f128.to_be_bytes()), 0x3fff0000000000000000000000000000); both_assert!((12.5f128).to_bits(), 0x40029000000000000000000000000000); both_assert!(u128::from_le_bytes(12.5f128.to_le_bytes()), 0x40029000000000000000000000000000); both_assert!((1337f128).to_bits(), 0x40094e40000000000000000000000000); both_assert!(u128::from_ne_bytes(1337f128.to_ne_bytes()), 0x40094e40000000000000000000000000); both_assert!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000); both_assert!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0); both_assert!(f128::from_be_bytes(0x3fff0000000000000000000000000000u128.to_be_bytes()), 1.0); both_assert!(f128::from_bits(0x40029000000000000000000000000000), 12.5); both_assert!(f128::from_le_bytes(0x40029000000000000000000000000000u128.to_le_bytes()), 12.5); both_assert!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0); assert_eq!(f128::from_ne_bytes(0x40094e40000000000000000000000000u128.to_ne_bytes()), 1337.0); both_assert!(f128::from_bits(0xc002c800000000000000000000000000), -14.25); // Check that NaNs roundtrip their bits regardless of signalingness // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits // NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply! const QUIET_NAN: u128 = f128::NAN.to_bits() | 0x0000_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA; const SIGNALING_NAN: u128 = f128::NAN.to_bits() ^ 0x0000_5555_5555_5555_5555_5555_5555_5555; both_assert!(f128::from_bits(QUIET_NAN).is_nan()); both_assert!(f128::from_bits(SIGNALING_NAN).is_nan()); both_assert!(f128::from_bits(QUIET_NAN).to_bits(), QUIET_NAN); if !has_broken_floats() { both_assert!(f128::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN); } } fn main() { f32(); f64(); #[cfg(target_arch = "x86_64")] { f16(); f128(); } }