The `Option<Module>` version is supported for the case where we don't know whether the `DefId` refers to a module or not.
Non-local traits and enums are also correctly found now.
When we need to emit a lint at a macro invocation, we currently use the
`NodeId` of its parent definition (e.g. the enclosing function). This
means that any `#[allow]` / `#[deny]` attributes placed 'closer' to the
macro (e.g. on an enclosing block or statement) will have no effect.
This commit computes a better `lint_node_id` in `InvocationCollector`.
When we visit/flat_map an AST node, we assign it a `NodeId` (earlier
than we normally would), and store than `NodeId` in current
`ExpansionData`. When we collect a macro invocation, the current
`lint_node_id` gets cloned along with our `ExpansionData`, allowing it
to be used if we need to emit a lint later on.
This improves the handling of `#[allow]` / `#[deny]` for
`SEMICOLON_IN_EXPRESSIONS_FROM_MACROS` and some `asm!`-related lints.
The 'legacy derive helpers' lint retains its current behavior
(I've inlined the now-removed `lint_node_id` function), since
there isn't an `ExpansionData` readily available.
This PR implements span quoting, allowing proc-macros to produce spans
pointing *into their own crate*. This is used by the unstable
`proc_macro::quote!` macro, allowing us to get error messages like this:
```
error[E0412]: cannot find type `MissingType` in this scope
--> $DIR/auxiliary/span-from-proc-macro.rs:37:20
|
LL | pub fn error_from_attribute(_args: TokenStream, _input: TokenStream) -> TokenStream {
| ----------------------------------------------------------------------------------- in this expansion of procedural macro `#[error_from_attribute]`
...
LL | field: MissingType
| ^^^^^^^^^^^ not found in this scope
|
::: $DIR/span-from-proc-macro.rs:8:1
|
LL | #[error_from_attribute]
| ----------------------- in this macro invocation
```
Here, `MissingType` occurs inside the implementation of the proc-macro
`#[error_from_attribute]`. Previosuly, this would always result in a
span pointing at `#[error_from_attribute]`
This will make many proc-macro-related error message much more useful -
when a proc-macro generates code containing an error, users will get an
error message pointing directly at that code (within the macro
definition), instead of always getting a span pointing at the macro
invocation site.
This is implemented as follows:
* When a proc-macro crate is being *compiled*, it causes the `quote!`
macro to get run. This saves all of the sapns in the input to `quote!`
into the metadata of *the proc-macro-crate* (which we are currently
compiling). The `quote!` macro then expands to a call to
`proc_macro::Span::recover_proc_macro_span(id)`, where `id` is an
opaque identifier for the span in the crate metadata.
* When the same proc-macro crate is *run* (e.g. it is loaded from disk
and invoked by some consumer crate), the call to
`proc_macro::Span::recover_proc_macro_span` causes us to load the span
from the proc-macro crate's metadata. The proc-macro then produces a
`TokenStream` containing a `Span` pointing into the proc-macro crate
itself.
The recursive nature of 'quote!' can be difficult to understand at
first. The file `src/test/ui/proc-macro/quote-debug.stdout` shows
the output of the `quote!` macro, which should make this eaier to
understand.
This PR also supports custom quoting spans in custom quote macros (e.g.
the `quote` crate). All span quoting goes through the
`proc_macro::quote_span` method, which can be called by a custom quote
macro to perform span quoting. An example of this usage is provided in
`src/test/ui/proc-macro/auxiliary/custom-quote.rs`
Custom quoting currently has a few limitations:
In order to quote a span, we need to generate a call to
`proc_macro::Span::recover_proc_macro_span`. However, proc-macros
support renaming the `proc_macro` crate, so we can't simply hardcode
this path. Previously, the `quote_span` method used the path
`crate::Span` - however, this only works when it is called by the
builtin `quote!` macro in the same crate. To support being called from
arbitrary crates, we need access to the name of the `proc_macro` crate
to generate a path. This PR adds an additional argument to `quote_span`
to specify the name of the `proc_macro` crate. Howver, this feels kind
of hacky, and we may want to change this before stabilizing anything
quote-related.
Additionally, using `quote_span` currently requires enabling the
`proc_macro_internals` feature. The builtin `quote!` macro
has an `#[allow_internal_unstable]` attribute, but this won't work for
custom quote implementations. This will likely require some additional
tricks to apply `allow_internal_unstable` to the span of
`proc_macro::Span::recover_proc_macro_span`.
cc #79813
This PR adds an allow-by-default future-compatibility lint
`SEMICOLON_IN_EXPRESSIONS_FROM_MACROS`. It fires when a trailing semicolon in a
macro body is ignored due to the macro being used in expression
position:
```rust
macro_rules! foo {
() => {
true; // WARN
}
}
fn main() {
let val = match true {
true => false,
_ => foo!()
};
}
```
The lint takes its level from the macro call site, and
can be allowed for a particular macro by adding
`#[allow(semicolon_in_expressions_from_macros)]`.
The lint is set to warn for all internal rustc crates (when being built
by a stage1 compiler). After the next beta bump, we can enable
the lint for the bootstrap compiler as well.
resolve: Simplify built-in macro table
We don't use full `SyntaxExtension`s from the table, only `SyntaxExtensionKind`s, and `Ident` in `register_builtin_macro` always had dummy span. This PR removes unnecessary data from the table and related function signatures.
Noticed when reviewing #80850.
resolve: Scope visiting doesn't need an `Ident`
Resolution scope visitor (`fn visit_scopes`) currently takes an `Ident` parameter, but it doesn't need a full identifier, or even its span, it only needs the `SyntaxContext` part.
The `SyntaxContext` part is necessary because scope visitor has to jump to macro definition sites, so it has to be directed by macro expansion information somehow.
I think it's clearer to pass only the necessary part.
Yes, usually visiting happens as a part of an identifier resolution, but in cases like collecting traits in scope (#80765) or collecting typo suggestions that's not the case.
r? `@matthewjasper`
This makes it possible to have both std::panic and core::panic as a
builtin macro, by using different builtin macro names for each.
Also removes SyntaxExtension::is_derive_copy, as the macro name (e.g.
sym::Copy) is now tracked and provides that information directly.
* Rename `ModuleData.normal_ancestor_id` to `nearest_parent_mod`
`normal_ancestor_id` is a very confusing name if you don't already
understand what it means. Adding docs helps, but using a clearer and
more obvious name is also important.
* Rename `Resolver::nearest_mod_parent` to `nearest_parent_mod`
* Add more docs
Previously, this would say no such macro existed, but this was
misleading, since the macro _did_ exist, it was just already seen.
- Say where the macro was previously defined
- Add long-form error message