Currently the parts of session initialization that happen within
`rustc_interface` are split between `run_compiler` and `create_session`.
This split isn't necessary and obscures what's happening.
This commit merges the two functions. I think a single longer function
is much clearer than splitting this code across two functions in
different modules, especially when `create_session` has 13 parameters,
and is misnamed (it also creates the codegen backend). The net result is
43 fewer lines of code.
- The early return can be right at the top.
- The control flow is simplified with `if let`.
- The `collect` isn't necessary.
- The "Unconditionally" comment is erroneously duplicated from
`check_attr_crate_type`, and can be removed.
It was added in 51938c61f6f1b26e463f9071716f543543486e72, a commit with
a 7,720 line diff and a one line commit message. Even then the comment
was incorrect; there was a removed a `build_output_filenames` call with
a `&[]` argument in rustdoc, but the commit removed that call. In such a
large commit, it's easy for small errors to occur.
By storing the unparsed values in `Config` and then parsing them within
`run_compiler`, the parsing functions can use the main symbol interner,
and not create their own short-lived interners.
This change also eliminates the need for one `EarlyErrorHandler` in
rustdoc, because parsing errors can be reported by another, slightly
later `EarlyErrorHandler`.
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
Cleanup and improve `--check-cfg` implementation
This PR removes some indentation in the code, as well as preventing some bugs/misusages and fix a nit in the doc.
r? ```@petrochenkov``` (maybe)
`parse_cfgspecs` and `parse_check_cfg` run very early, before the main
interner is running. They each use a short-lived interner and convert
all interned symbols to strings in their output data structures. Once
the main interner starts up, these data structures get converted into
new data structures that are identical except with the strings converted
to symbols.
All is not obvious from the current code, which is a mess, particularly
with inconsistent naming that obscures the parallel string/symbol data
structures. This commit clean things up a lot.
- The existing `CheckCfg` type is generic, allowing both
`CheckCfg<String>` and `CheckCfg<Symbol>` forms. This is really
useful, but it defaults to `String`. The commit removes the default so
we have to use `CheckCfg<String>` and `CheckCfg<Symbol>` explicitly,
which makes things clearer.
- Introduces `Cfg`, which is generic over `String` and `Symbol`, similar
to `CheckCfg`.
- Renames some things.
- `parse_cfgspecs` -> `parse_cfg`
- `CfgSpecs` -> `Cfg<String>`, plus it's used in more places, rather
than the underlying `FxHashSet` type.
- `CrateConfig` -> `Cfg<Symbol>`.
- `CrateCheckConfig` -> `CheckCfg<Symbol>`
- Adds some comments explaining the string-to-symbol conversions.
- `to_crate_check_config`, which converts `CheckCfg<String>` to
`CheckCfg<Symbol>`, is inlined and removed and combined with the
overly-general `CheckCfg::map_data` to produce
`CheckCfg::<String>::intern`.
- `build_configuration` now does the `Cfg<String>`-to-`Cfg<Symbol>`
conversion, so callers don't need to, which removes the need for
`to_crate_config`.
The diff for two of the fields in `Config` is a good example of the
improved clarity:
```
- pub crate_cfg: FxHashSet<(String, Option<String>)>,
- pub crate_check_cfg: CheckCfg,
+ pub crate_cfg: Cfg<String>,
+ pub crate_check_cfg: CheckCfg<String>,
```
Compare that with the diff for the corresponding fields in `ParseSess`,
and the relationship to `Config` is much clearer than before:
```
- pub config: CrateConfig,
- pub check_config: CrateCheckConfig,
+ pub config: Cfg<Symbol>,
+ pub check_config: CheckCfg<Symbol>,
```
In `parse_cfg`, we now construct a `FxHashSet<String>` directly instead of
constructing a `FxHashSet<Symbol>` and then immediately converting it to a
`FxHashSet<String>`(!)
(The type names made this behaviour non-obvious. The next commit will
make the type names clearer.)
In `test_edition_parsing`, change the
`build_session_options_and_crate_config` call to
`build_session_options`, because the config isn't used.
That leaves a single call site for
`build_session_options_and_crate_config`, so just inline and remove it.
The value of `-Cinstrument-coverage=` doesn't need to be `Option`
(Extracted from #117199, since this is a purely internal cleanup that can land independently.)
Not using this flag is identical to passing `-Cinstrument-coverage=off`, so there's no need to distinguish between `None` and `Some(Off)`.
Stop telling people to submit bugs for internal feature ICEs
This keeps track of usage of internal features, and changes the message to instead tell them that using internal features is not supported.
I thought about several ways to do this but now used the explicit threading of an `Arc<AtomicBool>` through `Session`. This is not exactly incremental-safe, but this is fine, as this is set during macro expansion, which is pre-incremental, and also only affects the output of ICEs, at which point incremental correctness doesn't matter much anyways.
See [MCP 620.](https://github.com/rust-lang/compiler-team/issues/596)
![image](https://github.com/rust-lang/rust/assets/48135649/be661f05-b78a-40a9-b01d-81ad2dbdb690)
This keeps track of usage of internal features, and changes the message
to instead tell them that using internal features is not supported.
See MCP 620.
Make `Iterator` a lang item
r? `@compiler-errors`
pulled out of https://github.com/rust-lang/rust/pull/116447
We're doing this change on its own, because iterator was the one diagnostic item that was load bearing on us correctly emitting errors about `diagnostic_item` mis-uses. It was used in some diagnostics as an early abort, before the actual checks of the diagnostic, so effectively the compiler was *unconditionally* checking for the iterator diagnostic item, even if it didn't emit any diagnostics. Changing those uses to use the lang item, caused us not to invoke the `all_diagnostic_items` query anymore, which then caused us to miss some issues around diagnostic items until they were actually used.
The reason we keep the diagnostic item around is that clippy uses it a lot and having `Iterator` be a lang item and a diagnostic item at the same time doesn't cost us anything, but makes clippy's internal code simpler
Remove support for alias `-Z instrument-coverage`
This flag was stabilized in rustc 1.60.0 (2022-04-07) as `-C instrument-coverage`, but the old unstable flag was kept around (with a warning) as an alias to ease migration.
It should now be reasonable to remove the somewhat tricky code that implemented that alias.
Fixes#116980.
Add new simpler and more explicit syntax for check-cfg
<details>
<summary>
Old proposition (before the MCP)
</summary>
This PR adds a new simpler and more explicit syntax for check-cfg. It consist of two new form:
- `exhaustive(names, values)`
- `configure(name, "value1", "value2", ... "valueN")`
The preview forms `names(...)` and `values(...)` have implicit meaning that are not strait-forward. In particular `values(foo)`&`values(bar)` and `names(foo, bar)` are not equivalent which has created [some confusions](https://github.com/rust-lang/rust/pull/98080).
Also the `names()` and `values()` form are not clear either and again created some confusions where peoples believed that `values()`&`values(foo)` could be reduced to just `values(foo)`.
To fix that the two new forms are made to be explicit and simpler. See the table of correspondence:
- `names()` -> `exhaustive(names)`
- `values()` -> `exhaustive(values)`
- `names(foo)` -> `exhaustive(names)`&`configure(foo)`
- `values(foo)` -> `configure(foo)`
- `values(feat, "foo", "bar")` -> `configure(feat, "foo", "bar")`
- `values(foo)`&`values(bar)` -> `configure(foo, bar)`
- `names()`&`values()`&`values(my_cfg)` -> `exhaustive(names, values)`&`configure(my_cfg)`
Another benefits of the new syntax is that it allow for further options (like conditional checking for --cfg, currently always on) without syntax change.
The two previous forms are deprecated and will be removed once cargo and beta rustc have the necessary support.
</details>
This PR is the first part of the implementation of [MCP636 - Simplify and improve explicitness of the check-cfg syntax](https://github.com/rust-lang/compiler-team/issues/636).
## New `cfg` form
It introduces the new [`cfg` form](https://github.com/rust-lang/compiler-team/issues/636) and deprecate the other two:
```
rustc --check-cfg 'cfg(name1, ..., nameN, values("value1", "value2", ... "valueN"))'
```
## Default built-in names and values
It also changes the default for the built-in names and values checking.
- Built-in values checking would always be activated as long as a `--check-cfg` argument is present
- Built-in names checking would always be activated as long as a `--check-cfg` argument is present **unless** if any `cfg(any())` arg is passed
~~**Note: depends on https://github.com/rust-lang/rust/pull/111068 but is reviewable (last two commits)!**~~
Resolve https://github.com/rust-lang/compiler-team/issues/636
r? `@petrochenkov`
THIR unsafety checking was getting a cycle of
function unsafety checking
-> building THIR for the function
-> evaluating pattern inline constants in the function
-> building MIR for the inline constant
-> checking unsafety of functions (so that THIR can be stolen)
This is fixed by not stealing THIR when generating MIR but instead when
unsafety checking.
This leaves an issue with pattern inline constants not being unsafety
checked because they are evaluated away when generating THIR.
To fix that we now represent inline constants in THIR patterns and
visit them in THIR unsafety checking.
This add a new form and deprecated the other ones:
- cfg(name1, ..., nameN, values("value1", "value2", ... "valueN"))
- cfg(name1, ..., nameN) or cfg(name1, ..., nameN, values())
- cfg(any())
It also changes the default exhaustiveness to be enable-by-default in
the presence of any --check-cfg arguments.
Remove cgu_reuse_tracker from Session
This removes a bit of global mutable state.
It will now miss post-lto cgu reuse when ThinLTO determines that a cgu doesn't get changed, but there weren't any tests for this anyway and a test for it would be fragile to the exact implementation of ThinLTO in LLVM.