This is a first pass at insert on RingBuf. I tried to keep it as simple as possible. I'm not sure of the performance implications of doing one copy vs. copying multiple times but moving a smaller amount of memory. I chose to stick with one copy, even if the amount of memory I have to move is larger.
I believe this is part of #18424
@Gankro mentioned this was missing.
I am trying to add an implementation of `bitor` for `BTreeSet`. I think I am most of the way there, but I am going to need some guidance to take it all the way.
When I run `make check`, I get:
```
error: cannot move out of dereference of `&`-pointer
self.union(_rhs).map(|&i| i).collect::<BTreeSet<T>>()
^~
```
I'd appreciate any nudges in the right direction. If I can figure this one out, I am sure I will be able to implement `bitand`, `bitxor`, and `sub` as well.
/cc @Gankro
---
**Update**
I have added implementations for `BitOr`, `BitAnd`, `BitXor`, and `Sub` for `BTreeSet`.
Add initial attempt at implementing BitOr for BTreeSet.
Update the implementation of the bitor operator for BTreeSets.
`make check` ran fine through this.
Add implementations for BitAnd, BitXor, and Sub as well.
Remove the FIXME comment and add unstable flags.
Add doctests for the bitop functions.
- Introduce a named type for the return type of `VecMap::move_iter`
- Rename all type parameters to `V` for "Value".
- Remove unnecessary call to an `Option::unwrap`, use pattern matching instead.
- Remove incorrect `Hash` implementation which took the `VecMap`'s capacity
into account.
This is a [breaking-change], however whoever used the `Hash` implementation
relied on an incorrect implementation.
Strings iterate to both char and &str, so it is natural it can also be extended or collected from an iterator of &str.
Apart from the trait implementations, `Extend<char>` is updated to use the iterator size hint, and the test added tests both the char and the &str versions of Extend and FromIterator.
I'm interested in including doctests for `BTreeMap`'s `iter_mut` and `into_iter` methods in this PR as well, but I am not sure of the best way to demonstrate/test what they do for the doctests.
- Introduce a named type for the return type of `VecMap::move_iter`
- Rename all type parameters to `V` for "Value".
- Remove unnecessary call to an `Option::unwrap`, use pattern matching instead.
- Remove incorrect `Hash` implementation which took the `VecMap`'s capacity
into account.
This is a [breaking-change], however whoever used the `Hash` implementation
relied on an incorrect implementation.
Change Example to Examples.
Add a doctest that better demonstrates the utility of as_string.
Update the doctest example to use String instead of &String.
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
(I don't understand why this works, and so I don't quite trust this yet. I'm pushing it up to see if anyone else can replicate this performance increase)
Somehow llvm is able to optimize this version of Vec::reserve into dramatically faster than the old version. In micro-benchmarks this was 2-10 times faster. It also reduce my Rust compile time from 41 minutes to 27 minutes.
Closes#19281.
Now that we have an overloaded comparison (`==`) operator, and that `Vec`/`String` deref to `[T]`/`str` on method calls, many `as_slice()`/`as_mut_slice()`/`to_string()` calls have become redundant. This patch removes them. These were the most common patterns:
- `assert_eq(test_output.as_slice(), "ground truth")` -> `assert_eq(test_output, "ground truth")`
- `assert_eq(test_output, "ground truth".to_string())` -> `assert_eq(test_output, "ground truth")`
- `vec.as_mut_slice().sort()` -> `vec.sort()`
- `vec.as_slice().slice(from, to)` -> `vec.slice(from_to)`
---
Note that e.g. `a_string.push_str(b_string.as_slice())` has been left untouched in this PR, since we first need to settle down whether we want to favor the `&*b_string` or the `b_string[]` notation.
This is rebased on top of #19167
cc @alexcrichton @aturon
There is already a test for `union` in the test namespace, but this commit adds a doctest that will appear in the rustdocs.
Someone on IRC said, *Write doctests!*, so here I am.
I am not sure this is the best way to demonstrate the behavior of the union function, so I am open to suggestions for improving this. If I am on the right track I'd be glad to include similar doctests for `intersection`, `difference`, etc.
In regards to:
https://github.com/rust-lang/rust/issues/19253#issuecomment-64836729
This commit:
* Changes the #deriving code so that it generates code that utilizes fewer
reexports (in particur Option::* and Result::*), which is necessary to
remove those reexports in the future
* Changes other areas of the codebase so that fewer reexports are utilized
Add a rustdoc test for union to exhibit how it is used.
There is already a test for union in the test namespace, but this commit
adds a doctest that will appear in the rustdocs.
Add a doctest for the difference function.
Add a doctest for the symmetric_difference function.
Add a doctest for the intersection function.
Update the union et al. doctests based on @Gankro's comments.
Make the union et al. doctests a bit more readable.
Somehow llvm is able to optimize this version of Vec::reserve
into dramatically faster than the old version. In micro-benchmarks
this was 2-10 times faster. It also shaved 14 minutes off of
rust's compile times.
Closes#19281.
Part of #18424
Adds `capacity()` function to VecMap, as per the collections reform.
(Salvaged from #19516, #19523, while we await an RFC regarding `reserve`/`reserve_index` for `VecMap`)
pop calls siftdown, siftdown calls siftdown_range, and siftdown_range
loops on an index that can start as low as 0 and approximately doubles
each iteration.
TrieSet doesn't yet have union, intersection, difference, and symmetric difference functions implemented. Luckily, TrieSet is largely similar to TreeSet, so I was able to reference the implementations of these functions in the latter, and adapt them as necessary to make them work for TrieSet.
One thing that I thought was interesting is that the Iterator yielded by `iter()` for TrieSet iterates over the set's values directly rather than references to the values (whereas I think in most cases I see the Iterator given by `iter()` iterating over immutable references), so for consistency within TrieSet's interface, all of these Iterators also iterate over the values directly. Let me know if all of these should be instead iterating over references.
At the same time remove the `pub use` of the variants in favor of accessing
through the enum type itself. This is a breaking change as the `Found` and
`NotFound` variants must now be imported through `BinarySearchResult` instead of
just `std::slice`.
[breaking-change]
Closes#19271
This is an initial pass at stabilizing the `iter` module. The module is
fairly large, but is also pretty polished, so most of the stabilization
leaves things as they are.
Some changes:
* Due to the new object safety rules, various traits needs to be split
into object-safe traits and extension traits. This includes `Iterator`
itself. While splitting up the traits adds some complexity, it will
also increase flexbility: once we have automatic impls of `Trait` for
trait objects over `Trait`, then things like the iterator adapters
will all work with trait objects.
* Iterator adapters that use up the entire iterator now take it by
value, which makes the semantics more clear and helps catch bugs. Due
to the splitting of Iterator, this does not affect trait objects. If
the underlying iterator is still desired for some reason, `by_ref` can
be used. (Note: this change had no fallout in the Rust distro except
for the useless mut lint.)
* In general, extension traits new and old are following an [in-progress
convention](rust-lang/rfcs#445). As such, they
are marked `unstable`.
* As usual, anything involving closures is `unstable` pending unboxed
closures.
* A few of the more esoteric/underdeveloped iterator forms (like
`RandomAccessIterator` and `MutableDoubleEndedIterator`, along with
various unfolds) are left experimental for now.
* The `order` submodule is left `experimental` because it will hopefully
be replaced by generalized comparison traits.
* "Leaf" iterators (like `Repeat` and `Counter`) are uniformly
constructed by free fns at the module level. That's because the types
are not otherwise of any significance (if we had `impl Trait`, you
wouldn't want to define a type at all).
Closes#17701
Due to renamings and splitting of traits, this is a:
[breaking-change]
This change applies the conventions to unwrap listed in [RFC 430][rfc] to rename
non-failing `unwrap` methods to `into_inner`. This is a breaking change, but all
`unwrap` methods are retained as `#[deprecated]` for the near future. To update
code rename `unwrap` method calls to `into_inner`.
[rfc]: https://github.com/rust-lang/rfcs/pull/430
[breaking-change]
cc #19091
At the same time remove the `pub use` of the variants in favor of accessing
through the enum type itself. This is a breaking change as the `Found` and
`NotFound` variants must now be imported through `BinarySearchResult` instead of
just `std::slice`.
[breaking-change]
Closes#19272
Whilst browsing the source for BinaryHeap, I saw a FIXME for implementing into_iter. I think, since the BinaryHeap is represented internally using just a Vec, just calling into_iter() on the BinaryHeap's data should be sufficient to do what we want here. If this actually isn't the right approach (e.g., I should write a struct MoveItems and appropriate implementation for BinaryHeap instead), let me know and I'll happily rework this.
Both of the tests that I have added pass. This is my first contribution to Rust, so please let me know any ways I can improve this PR!
A single impl supports all of `[T]`, `Vec<T>` and `CVec<T>`.
Once `Iterable` is implemented, we will prefer it to `SlicePrelude`.
But the `with_capacity()` part might become tricky.
This change applies the conventions to unwrap listed in [RFC 430][rfc] to rename
non-failing `unwrap` methods to `into_inner`. This is a breaking change, but all
`unwrap` methods are retained as `#[deprecated]` for the near future. To update
code rename `unwrap` method calls to `into_inner`.
[rfc]: https://github.com/rust-lang/rfcs/pull/430
[breaking-change]
Closes#13159
cc #19091
The impl for [T] also works as impl for slices in general.
By generalizing the impl of StrVector for Vec<Str> to that for
AsSlice<Str>, it becomes much more generic.
Once Iterable is implemented, we will prefer it to AsSlice.
But the with_capacity() part might become tricky.
Signed-off-by: NODA, Kai <nodakai@gmail.com>
This commit makes `Cow` more usable by allowing it to be applied to
unsized types (as was intended) and providing some basic `ToOwned`
implementations on slice types. It also corrects the documentation for
`Cow` to no longer mention `DerefMut`, and adds an example.
Closes#19123
This commit is an implementation of [RFC 240][rfc] when applied to the standard
library. It primarily deprecates the entirety of `string::raw`, `vec::raw`,
`slice::raw`, and `str::raw` in favor of associated functions, methods, and
other free functions. The detailed renaming is:
* slice::raw::buf_as_slice => slice::from_raw_buf
* slice::raw::mut_buf_as_slice => slice::from_raw_mut_buf
* slice::shift_ptr => deprecated with no replacement
* slice::pop_ptr => deprecated with no replacement
* str::raw::from_utf8 => str::from_utf8_unchecked
* str::raw::c_str_to_static_slice => str::from_c_str
* str::raw::slice_bytes => deprecated for slice_unchecked (slight semantic diff)
* str::raw::slice_unchecked => str.slice_unchecked
* string::raw::from_parts => String::from_raw_parts
* string::raw::from_buf_len => String::from_raw_buf_len
* string::raw::from_buf => String::from_raw_buf
* string::raw::from_utf8 => String::from_utf8_unchecked
* vec::raw::from_buf => Vec::from_raw_buf
All previous functions exist in their `#[deprecated]` form, and the deprecation
messages indicate how to migrate to the newer variants.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0240-unsafe-api-location.md
[breaking-change]
Closes#17863
This commit is an implementation of [RFC 240][rfc] when applied to the standard
library. It primarily deprecates the entirety of `string::raw`, `vec::raw`,
`slice::raw`, and `str::raw` in favor of associated functions, methods, and
other free functions. The detailed renaming is:
* slice::raw::buf_as_slice => slice::with_raw_buf
* slice::raw::mut_buf_as_slice => slice::with_raw_mut_buf
* slice::shift_ptr => deprecated with no replacement
* slice::pop_ptr => deprecated with no replacement
* str::raw::from_utf8 => str::from_utf8_unchecked
* str::raw::c_str_to_static_slice => str::from_c_str
* str::raw::slice_bytes => deprecated for slice_unchecked (slight semantic diff)
* str::raw::slice_unchecked => str.slice_unchecked
* string::raw::from_parts => String::from_raw_parts
* string::raw::from_buf_len => String::from_raw_buf_len
* string::raw::from_buf => String::from_raw_buf
* string::raw::from_utf8 => String::from_utf8_unchecked
* vec::raw::from_buf => Vec::from_raw_buf
All previous functions exist in their `#[deprecated]` form, and the deprecation
messages indicate how to migrate to the newer variants.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0240-unsafe-api-location.md
[breaking-change]
Closes#17863
'Numeric' is the proper name of the unicode character class,
and this frees up the word 'digit' for ascii use in libcore.
Since I'm going to rename `Char::is_digit_radix` to
`is_digit`, I am not leaving a deprecated method in place,
because that would just cause name clashes, as both
`Char` and `UnicodeChar` are in the prelude.
[breaking-change]
This PR completes the removal of the runtime system and green-threaded abstractions as part of implementing [RFC 230](https://github.com/rust-lang/rfcs/pull/230).
Specifically:
* It removes the `Runtime` trait, welding the scheduling infrastructure directly to native threads.
* It removes `libgreen` and `libnative` entirely.
* It rewrites `sync::mutex` as a trivial layer on top of native mutexes. Eventually, the two modules will be merged.
* It hides the vast majority of `std::rt`.
This completes the basic task of removing the runtime system (I/O and scheduling) and components that depend on it.
After this lands, a follow-up PR will pull the `rustrt` crate back into `std`, turn `std::task` into `std::thread` (with API changes to go along with it), and completely cut out the remaining startup/teardown sequence. Other changes, including new [TLS](https://github.com/rust-lang/rfcs/pull/461) and synchronization are in the RFC or pre-RFC phase.
Closes#17325Closes#18687
[breaking-change]
r? @alexcrichton
Previously, the entire runtime API surface was publicly exposed, but
that is neither necessary nor desirable. This commit hides most of the
module, using librustrt directly as needed. The arrangement will need to
be revisited when rustrt is pulled into std.
[breaking-change]
Closes#18415
This links [`std::str`](http://doc.rust-lang.org/std/str/index.html) documentation to [literals](http://doc.rust-lang.org/reference.html#literals) in the reference guide and collects examples of literals into one group at the beginning of the section. ~~The new tables are not exhaustive (some escapes were skipped) and so I try to link back to the respective sections where more detail is located.~~ The tables are are mostly exhaustive. I misunderstood some of the whitespace codes.
I don't think the tables actually look that nice if that's important and I'm not sure how it could be improved. I think it does do a good job of collecting available options together. I think listing the escapes together is particularly helpful because they vary with type and are embedded in paragraphs.
[EDIT]
The [ascii table](http://man-ascii.com/) is here and may be useful.
This commit makes `Cow` more usable by allowing it to be applied to
unsized types (as was intended) and providing some basic `ToOwned`
implementations on slice types. It also corrects the documentation for
`Cow` to no longer mention `DerefMut`, and adds an example.
This commit changes `AsSlice` to work on unsized types, and changes the
`impl` for `&[T]` to `[T]`. Aside from making the trait more general,
this also helps some ongoing work with method resolution changes.
This is a breaking change: code that uses generics bounded by `AsSlice`
will have to change. In particular, such code previously often took
arguments of type `V` where `V: AsSlice<T>` by value. These should now
be taken by reference:
```rust
fn foo<Sized? V: AsSlice<T>>(v: &V) { .. }
```
A few std lib functions have been changed accordingly.
[breaking-change]
`slice_shift_char` splits a `str` into it's leading `char` and the remainder of the `str`. Currently, it returns a `(Option<char>, &str)` such that:
"bar".slice_shift_char() => (Some('b'), "ar")
"ar".slice_shift_char() => (Some('a'), "r")
"r".slice_shift_char() => (Some('r'), "")
"".slice_shift_char() => (None, "")
This is a little odd. Either a `str` can be split into both a head and a tail or it cannot. So the return type should be `Option<(char, &str)>`. With the current behaviour, in the case of the empty string, the `str` returned is meaningless - it is always the empty string.
This PR changes `slice_shift_char` so that:
"bar".slice_shift_char() => Some(('b', "ar"))
"ar".slice_shift_char() => Some(('a', "r"))
"r".slice_shift_char() => Some(('r', ""))
"".slice_shift_char() => None
Following [the collections reform
RFC](https://github.com/rust-lang/rfcs/pull/235),
this commit adds a new `borrow` module to libcore.
The module contains traits for borrowing data (`BorrowFrom` and
`BorrowFromMut`),
generalized cloning (`ToOwned`), and a clone-on-write smartpointer (`Cow`).
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:
```
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
=>
```
pub use self::Foo::{A, B};
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
or
```
pub enum Foo {
A,
B
}
fn main() {
let a = Foo::A;
}
```
[breaking-change]
`slice_shift_char` splits a `str` into it's leading `char` and the remainder
of the `str`. Currently, it returns a `(Option<char>, &str)` such that:
"bar".slice_shift_char() => (Some('b'), "ar")
"ar".slice_shift_char() => (Some('a'), "r")
"r".slice_shift_char() => (Some('r'), "")
"".slice_shift_char() => (None, "")
This is a little odd. Either a `str` can be split into both a head and a
tail or it cannot. So the return type should be `Option<(char, &str)>`.
With the current behaviour, in the case of the empty string, the `str`
returned is meaningless - it is always the empty string.
This commit changes slice_shift_char so that:
"bar".slice_shift_char() => Some(('b', "ar"))
"ar".slice_shift_char() => Some(('a', "r"))
"r".slice_shift_char() => Some(('r', ""))
"".slice_shift_char() => None
[breaking-change]
Fix for task in Metabug #18009 (Rebased version of https://github.com/rust-lang/rust/pull/18170)
This changes much of about how RingBuf functions. `lo`, `nelts` are replaced by a more traditional `head` and`tail`. The `Vec<Option<T>>` is replaced by a bare pointer that is managed by the `RingBuf` itself. This also expects the ring buffer to always be size that is a power of 2.
This change also includes a number of new tests to cover the some areas that could be of concern with manual memory management.
The benchmarks have been reworked since the old ones were benchmarking of the Ring buffers growth rather then the actual test.
The unit test suite have been expanded, and exposed some bugs in `fn get()` and `fn get_mut()`
## Benchmark
**Before:**
```
test ring_buf::tests::bench_grow_1025 ... bench: 8919 ns/iter (+/- 87)
test ring_buf::tests::bench_iter_1000 ... bench: 924 ns/iter (+/- 28)
test ring_buf::tests::bench_mut_iter_1000 ... bench: 918 ns/iter (+/- 6)
test ring_buf::tests::bench_new ... bench: 15 ns/iter (+/- 0)
test ring_buf::tests::bench_pop_100 ... bench: 294 ns/iter (+/- 9)
test ring_buf::tests::bench_pop_front_100 ... bench: 948 ns/iter (+/- 32)
test ring_buf::tests::bench_push_back_100 ... bench: 291 ns/iter (+/- 16)
test ring_buf::tests::bench_push_front_100 ... bench: 311 ns/iter (+/- 27
```
**After:**
```
test ring_buf::tests::bench_grow_1025 ... bench: 2209 ns/iter (+/- 169)
test ring_buf::tests::bench_iter_1000 ... bench: 534 ns/iter (+/- 27)
test ring_buf::tests::bench_mut_iter_1000 ... bench: 515 ns/iter (+/- 28)
test ring_buf::tests::bench_new ... bench: 11 ns/iter (+/- 0)
test ring_buf::tests::bench_pop_100 ... bench: 170 ns/iter (+/- 5)
test ring_buf::tests::bench_pop_front_100 ... bench: 171 ns/iter (+/- 11)
test ring_buf::tests::bench_push_back_100 ... bench: 172 ns/iter (+/- 13)
test ring_buf::tests::bench_push_front_100 ... bench: 158 ns/iter (+/- 12)
```
A recent change turned off inheritance for the #[stable] by default, but
failed to catch all the cases where this was being used in std. This
patch fixes that problem.
I found some occurrences of "failure" and "fails" in the documentation. I changed them to "panics" if it means a task panic. Otherwise I left it as is, or changed it to "errors" to clearly distinguish them.
Also, I made a minor fix that is breaking the layout of a module page. "Example" is shown in an irrelevant place from the following page: http://doc.rust-lang.org/std/os/index.html
-Adds unit tests for fn get() and fn get_mut() which are currently untested
-Adds unit tests to verify growth of the ringbuffer when reserve is called.
-Adds unit tests to confirm that dropping of items is correct
Move ringbuf to use a raw buffer instead of Option<T>