Startup objects disappearing from sysroot
When launching tests with --keep-stage option, startup objects such as rsbegin.o an rsend.o may disappear from the corresponding stageN compiler.
Fix issue #120784
Fix `ErrorGuaranteed` unsoundness with stash/steal.
When you stash an error, the error count is incremented. You can then use the non-zero error count to get an `ErrorGuaranteed`. You can then steal the error, which decrements the error count. You can then cancel the error.
Example code:
```
fn unsound(dcx: &DiagCtxt) -> ErrorGuaranteed {
let sp = rustc_span::DUMMY_SP;
let k = rustc_errors::StashKey::Cycle;
dcx.struct_err("bogus").stash(sp, k); // increment error count on stash
let guar = dcx.has_errors().unwrap(); // ErrorGuaranteed from error count > 0
let err = dcx.steal_diagnostic(sp, k).unwrap(); // decrement error count on steal
err.cancel(); // cancel error
guar // ErrorGuaranteed with no error emitted!
}
```
This commit fixes the problem in the simplest way: by not counting stashed errors in `DiagCtxt::{err_count,has_errors}`.
However, just doing this without any other changes leads to over 40 ui test failures. Mostly because of uninteresting extra errors (many saying "type annotations needed" when type inference fails), and in a few cases, due to delayed bugs causing ICEs when no normal errors are printed.
To fix these, this commit adds `DiagCtxt::stashed_err_count`, and uses it in three places alongside `DiagCtxt::{has_errors,err_count}`. It's dodgy to rely on it, because unlike `DiagCtxt::err_count` it can go up and down. But it's needed to preserve existing behaviour, and at least the three places that need it are now obvious.
r? oli-obk
Fix more `ty::Error` ICEs in MIR passes
Fixes#120791 - Add a check for `ty::Error` in the `ByMove` coroutine pass
Fixes#120816 - Add a check for `ty::Error` in the MIR validator
Also a drive-by fix for a FIXME I had asked oli to add
r? oli-obk
A drive-by rewrite of `give_region_a_name()`
This drive-by rewrite makes the cache-updating nature of the method clearer, using the Entry API into the hash table for region names to capture the update-insert nature of the method. May be marginally more efficient since it only runtime-borrows and indexes the map once, but in this context the performance impact is almost certainly completely negligible.
Note that this commit should preserve all externally visible behaviour. Notably, it preserves the debug logging:
1. printing even in the case of a `None` for the new computed name, and
2. only printing on new values, begin silent on reused values
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
core/time: avoid divisions in Duration::new
In our (decently large) code base, we use `SystemTime::UNIX_EPOCH.elapsed()` in a lot of places & often in a loop or in the hot path. On [Unix](https://github.com/rust-lang/rust/blob/1.75.0/library/std/src/sys/unix/time.rs#L153-L162) at least, it seems we do calculations before hand to ensure that nanos is within the valid range, yet `Duration::new()` still checks it again, using 2 divisions. It seems like adding a branch can make this function 33% faster on ARM64 in the cases where nanos is already in the valid range & seems to have no effect in the other case.
Benchmarks:
M1 Pro (14-inch base model):
```
duration/current/checked
time: [1.5945 ns 1.6167 ns 1.6407 ns]
Found 5 outliers among 100 measurements (5.00%)
2 (2.00%) high mild
3 (3.00%) high severe
duration/current/unchecked
time: [1.5941 ns 1.6051 ns 1.6179 ns]
Found 2 outliers among 100 measurements (2.00%)
1 (1.00%) high mild
1 (1.00%) high severe
duration/branched/checked
time: [1.1997 ns 1.2048 ns 1.2104 ns]
Found 8 outliers among 100 measurements (8.00%)
4 (4.00%) high mild
4 (4.00%) high severe
duration/branched/unchecked
time: [1.5881 ns 1.5957 ns 1.6039 ns]
Found 6 outliers among 100 measurements (6.00%)
3 (3.00%) high mild
3 (3.00%) high severe
```
EC2 c7gd.16xlarge (Graviton 3):
```
duration/current/checked
time: [2.7996 ns 2.8000 ns 2.8003 ns]
Found 5 outliers among 100 measurements (5.00%)
2 (2.00%) low severe
3 (3.00%) low mild
duration/current/unchecked
time: [2.9922 ns 2.9925 ns 2.9928 ns]
Found 7 outliers among 100 measurements (7.00%)
4 (4.00%) low severe
1 (1.00%) low mild
2 (2.00%) high mild
duration/branched/checked
time: [2.0830 ns 2.0843 ns 2.0857 ns]
Found 3 outliers among 100 measurements (3.00%)
1 (1.00%) low severe
1 (1.00%) low mild
1 (1.00%) high mild
duration/branched/unchecked
time: [2.9879 ns 2.9886 ns 2.9893 ns]
Found 5 outliers among 100 measurements (5.00%)
3 (3.00%) low severe
2 (2.00%) low mild
```
EC2 r7iz.16xlarge (Intel Xeon Scalable-based (Sapphire Rapids)):
```
duration/current/checked
time: [980.60 ps 980.79 ps 980.99 ps]
Found 10 outliers among 100 measurements (10.00%)
4 (4.00%) low severe
2 (2.00%) low mild
3 (3.00%) high mild
1 (1.00%) high severe
duration/current/unchecked
time: [979.53 ps 979.74 ps 979.96 ps]
Found 6 outliers among 100 measurements (6.00%)
2 (2.00%) low severe
1 (1.00%) low mild
2 (2.00%) high mild
1 (1.00%) high severe
duration/branched/checked
time: [938.72 ps 938.96 ps 939.22 ps]
Found 4 outliers among 100 measurements (4.00%)
1 (1.00%) low mild
1 (1.00%) high mild
2 (2.00%) high severe
duration/branched/unchecked
time: [1.0103 ns 1.0110 ns 1.0118 ns]
Found 10 outliers among 100 measurements (10.00%)
2 (2.00%) low mild
7 (7.00%) high mild
1 (1.00%) high severe
```
Bench code (ran using stable 1.75.0 & criterion latest 0.5.1):
I couldn't find any benches for `Duration` in this repo, so I just copied the relevant types & recreated it.
```rust
use criterion::{black_box, criterion_group, criterion_main, Criterion};
pub fn duration_bench(c: &mut Criterion) {
const NANOS_PER_SEC: u32 = 1_000_000_000;
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
struct Nanoseconds(u32);
impl Default for Nanoseconds {
#[inline]
fn default() -> Self {
// SAFETY: 0 is within the valid range
unsafe { Nanoseconds(0) }
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
pub struct Duration {
secs: u64,
nanos: Nanoseconds, // Always 0 <= nanos < NANOS_PER_SEC
}
impl Duration {
#[inline]
pub const fn new_current(secs: u64, nanos: u32) -> Duration {
let secs = match secs.checked_add((nanos / NANOS_PER_SEC) as u64) {
Some(secs) => secs,
None => panic!("overflow in Duration::new"),
};
let nanos = nanos % NANOS_PER_SEC;
// SAFETY: nanos % NANOS_PER_SEC < NANOS_PER_SEC, therefore nanos is within the valid range
Duration { secs, nanos: unsafe { Nanoseconds(nanos) } }
}
#[inline]
pub const fn new_branched(secs: u64, nanos: u32) -> Duration {
if nanos < NANOS_PER_SEC {
// SAFETY: nanos < NANOS_PER_SEC, therefore nanos is within the valid range
Duration { secs, nanos: unsafe { Nanoseconds(nanos) } }
} else {
let secs = match secs.checked_add((nanos / NANOS_PER_SEC) as u64) {
Some(secs) => secs,
None => panic!("overflow in Duration::new"),
};
let nanos = nanos % NANOS_PER_SEC;
// SAFETY: nanos % NANOS_PER_SEC < NANOS_PER_SEC, therefore nanos is within the valid range
Duration { secs, nanos: unsafe { Nanoseconds(nanos) } }
}
}
}
let mut group = c.benchmark_group("duration/current");
group.bench_function("checked", |b| {
b.iter(|| black_box(Duration::new_current(black_box(1_000_000_000), black_box(1_000_000))));
});
group.bench_function("unchecked", |b| {
b.iter(|| {
black_box(Duration::new_current(black_box(1_000_000_000), black_box(2_000_000_000)))
});
});
drop(group);
let mut group = c.benchmark_group("duration/branched");
group.bench_function("checked", |b| {
b.iter(|| {
black_box(Duration::new_branched(black_box(1_000_000_000), black_box(1_000_000)))
});
});
group.bench_function("unchecked", |b| {
b.iter(|| {
black_box(Duration::new_branched(black_box(1_000_000_000), black_box(2_000_000_000)))
});
});
}
criterion_group!(duration_benches, duration_bench);
criterion_main!(duration_benches);
```
Make privacy visitor use types more (instead of HIR)
r? ``@petrochenkov``
This is a prerequisite to normalizing projections, as otherwise we have too many invalid bound vars (hir_ty_to_ty is creating types that have bound vars, but no binder).
The commits are still chaotic, I'm gonna clean them up, but I just wanted to let you know about the general direction and wondering if we could land this before adding normalization, as normalization is where behavioral changes happen, and I'd like to keep that part as minimal as possible.
[context can be found on zulip](https://rust-lang.zulipchat.com/#narrow/stream/315482-t-compiler.2Fetc.2Fopaque-types/topic/weak.20type.20aliases.20and.20privacy)
Toggle assert_unsafe_precondition in codegen instead of expansion
The goal of this PR is to make some of the unsafe precondition checks in the standard library available in debug builds. Some UI tests are included to verify that it does that.
The diff is large, but most of it is blessing mir-opt tests and I've also split up this PR so it can be reviewed commit-by-commit.
This PR:
1. Adds a new intrinsic, `debug_assertions` which is lowered to a new MIR NullOp, and only to a constant after monomorphization
2. Rewrites `assume_unsafe_precondition` to check the new intrinsic, and be monomorphic.
3. Skips codegen of the `assume` intrinsic in unoptimized builds, because that was silly before but with these checks it's *very* silly
4. The checks with the most overhead are `ptr::read`/`ptr::write` and `NonNull::new_unchecked`. I've simply added `#[cfg(debug_assertions)]` to the checks for `ptr::read`/`ptr::write` because I was unable to come up with any (good) ideas for decreasing their impact. But for `NonNull::new_unchecked` I found that the majority of callers can use a different function, often a safe one.
Yes, this PR slows down the compile time of some programs. But in our benchmark suite it's never more than 1% icount, and the average icount change in debug-full programs is 0.22%. I think that is acceptable for such an improvement in developer experience.
https://github.com/rust-lang/rust/issues/120539#issuecomment-1922687101
Always check the result of `pthread_mutex_lock`
Fixes#120147.
Instead of manually adding a list of "good" platforms, I've simply made the check unconditional. pthread's mutex is already quite slow on most platforms, so one single well-predictable branch shouldn't hurt performance too much.
When launching tests with --keep-stage option, startup objects
such as rsbegin.o an rsend.o may disappear from the corresponding
stageN compiler.
Fix issue #120784
When you stash an error, the error count is incremented. You can then
use the non-zero error count to get an `ErrorGuaranteed`. You can then
steal the error, which decrements the error count. You can then cancel
the error.
Example code:
```
fn unsound(dcx: &DiagCtxt) -> ErrorGuaranteed {
let sp = rustc_span::DUMMY_SP;
let k = rustc_errors::StashKey::Cycle;
dcx.struct_err("bogus").stash(sp, k); // increment error count on stash
let guar = dcx.has_errors().unwrap(); // ErrorGuaranteed from error count > 0
let err = dcx.steal_diagnostic(sp, k).unwrap(); // decrement error count on steal
err.cancel(); // cancel error
guar // ErrorGuaranteed with no error emitted!
}
```
This commit fixes the problem in the simplest way: by not counting
stashed errors in `DiagCtxt::{err_count,has_errors}`.
However, just doing this without any other changes leads to over 40 ui
test failures. Mostly because of uninteresting extra errors (many saying
"type annotations needed" when type inference fails), and in a few
cases, due to delayed bugs causing ICEs when no normal errors are
printed.
To fix these, this commit adds `DiagCtxt::stashed_err_count`, and uses
it in three places alongside `DiagCtxt::{has_errors,err_count}`. It's
dodgy to rely on it, because unlike `DiagCtxt::err_count` it can go up
and down. But it's needed to preserve existing behaviour, and at least
the three places that need it are now obvious.
Rollup of 9 pull requests
Successful merges:
- #120590 (Remove unused args from functions)
- #120750 (No need to take `ImplTraitContext` by ref)
- #120769 (make future diffs minimal)
- #120772 (Remove myself from review rotation.)
- #120775 (Make `min_exhaustive_patterns` match `exhaustive_patterns` better)
- #120778 (Deduplicate `tcx.instance_mir(instance)` calls in `try_instance_mir`)
- #120782 (Fix mir pass ICE in the presence of other errors)
- #120783 (Add release note for new ambiguous_wide_pointer_comparisons lint)
- #120801 (Avoid ICE in drop recursion check in case of invalid drop impls)
r? `@ghost`
`@rustbot` modify labels: rollup
Add release note for new ambiguous_wide_pointer_comparisons lint
I found out about this new lint in Rust because I had code allowing the Clippy lint. Clippy alerted me to the lint name change, and I went searching for the new lint's name in the release notes and was surprised there wasn't an item for it.
Fix mir pass ICE in the presence of other errors
fixes#120779
it is impossible to add a ui test for this, because it only reproduces in build-fail, but a test that also has errors in check-fail mode can't be made build-fail 🙃
I would have to add a run-make test or sth, which is overkill for such a tiny thing imo.
Make `min_exhaustive_patterns` match `exhaustive_patterns` better
Split off from https://github.com/rust-lang/rust/pull/120742.
There remained two edge cases where `min_exhaustive_patterns` wasn't behaving like `exhaustive_patterns`. This fixes them, and tests the feature in a bunch more cases. I essentially went through all uses of `exhaustive_patterns` to see which ones would be interesting to compare between the two features.
r? `@compiler-errors`
Remove myself from review rotation.
I've been unable to keep up with reviews. :(
Not sure if this helps much, considering there aren't many other libs reviewers on the rotation at the moment.
Hopefully I can add myself back again Soon™ when I can commit more time to reviewing.
No need to take `ImplTraitContext` by ref
We used to mutate `ImplTraitContext`, so it used to be `&mut` mutable ref. Then I think it used to have non-`Copy` data in it, so we took it by `&` ref. Now, none of that remains, so just copy it around.
Remove unused args from functions
`#[instrument]` suppresses the unused arguments from a function, *and* suppresses unused methods too! This PR removes things which are only used via `#[instrument]` calls, and fixes some other errors (privacy?) that I will comment inline.
It's possible that some of these arguments were being passed in for the purposes of being instrumented, but I am unconvinced by most of them.
Introduce `enter_forall` to supercede `instantiate_binder_with_placeholders`
r? `@lcnr`
Long term we'd like to experiment with decrementing the universe count after "exiting" binders so that we do not end up creating infer vars in non-root universes even when they logically reside in the root universe. The fact that we dont do this currently results in a number of issues in the new trait solver where we consider goals to be ambiguous because otherwise it would require lowering the universe of an infer var. i.e. the goal `?x.0 eq <T as Trait<?y.1>>::Assoc` where the alias is rigid would not be able to instantiate `?x` with the alias as there would be a universe error.
This PR is the first-ish sort of step towards being able to implement this as eventually we would want to decrement the universe in `enter_forall`. Unfortunately its Difficult to actually implement decrementing universes nicely so this is a separate step which moves us closer to the long term goal ✨