Rewrite how the HRTB algorithm matches impls against obligations. Instead of impls providing higher-ranked trait-references, impls now once again only have early-bound regions. The skolemization checks are thus moved out into trait matching itself. This allows to implement "perfect forwarding" impls like those described in #19730. This PR builds on a previous PR that was already reviewed by @pnkfelix.
r? @pnkfelix
Fixes#19730
This fixes#19978. The bug was introduced by 570325d, where if the type
of an Fn has not been inferred (strs[0] is "_") we slice from 1 to
0. We now explicitly check if `strs[0]` is a single element tuple.
lifetimes. This currently causes an ICE; it should (ideally) work, but
failing that at least give a structured error. For the purposes of
this PR, though, workaround is fine.
read (`//!` is intrusive) and annoying to edit (must maintain a prefix
on every line). Since the only purpose of a `doc.rs` file is to have a
bunch of text, using `/*!` and `*/` without indentations seems
appropriate.
This PR substantially narrows the notion of a "runtime" in Rust, and allows calling into Rust code directly without any setup or teardown.
After this PR, the basic "runtime support" in Rust will consist of:
* Unwinding and backtrace support
* Stack guards
Other support, such as helper threads for timers or the notion of a "current thread" are initialized automatically upon first use.
When using Rust in an embedded context, it should now be possible to call a Rust function directly as a C function with absolutely no setup, though in that case panics will cause the process to abort. In this regard, the C/Rust interface will look much like the C/C++ interface.
In more detail, this PR:
* Merges `librustrt` back into `std::rt`, undoing the facade. While doing so, it removes a substantial amount of redundant functionality (such as mutexes defined in the `rt` module). Code using `librustrt` can now call into `std::rt` to e.g. start executing Rust code with unwinding support.
* Allows all runtime data to be initialized lazily, including the "current thread", the "at_exit" infrastructure, and the "args" storage.
* Deprecates and largely removes `std::task` along with the widespread requirement that there be a "current task" for many APIs in `std`. The entire task infrastructure is replaced with `std::thread`, which provides a more standard API for manipulating and creating native OS threads. In particular, it's possible to join on a created thread, and to get a handle to the currently-running thread. In addition, threads are equipped with some basic blocking support in the form of `park`/`unpark` operations (following a tradition in some OSes as well as the JVM). See the `std::thread` documentation for more details.
* Channels are refactored to use a new internal blocking infrastructure that itself sits on top of `park`/`unpark`.
One important change here is that a Rust program ends when its main thread does, following most threading models. On the other hand, threads will often be created with an RAII-style join handle that will re-institute blocking semantics naturally (and with finer control).
This is very much a:
[breaking-change]
Closes#18000
r? @alexcrichton