For most parts, rumprun currently looks like NetBSD, as they share the same
libc and drivers. However, being a unikernel, rumprun does not support
process management, signals or virtual memory, so related functions
might fail at runtime. Stack guards are disabled exactly for this reason.
Code for rumprun is always cross-compiled, it uses always static
linking and needs a custom linker.
it makes rustc compatible with gcc installation that are using
`--program-transform-name' configure flag (on OpenBSD for example).
- detects at configure the name of stdc++ library on the system
- use the detected name in llvm makefile (with enable-static-stdcpp),
and pass it to mklldeps.py
- generate mklldeps.rs using this detected name
note that CFG_STDCPP_NAME is about stdc++ name, not about libc++. If
using libc++, the default name will be `stdc++', but it won't be used
when linking.
Redirect stdout on the python bogosity detector. This is printing
pwd to the terminal currently.
Reformat the bogus python/cmake messages so they format correctly.
echo does not always escape newlines (it doesn't here), and multiline
strings don't whitespace munch.
r? @alexcrichton
Redirect stdout on the python bogosity detector. This is printing
pwd to the terminal currently.
Reformat the bogus python/cmake messages so they format correctly.
echo does not always escape newlines (it doesn't here), and multiline
strings don't whitespace munch.
under OpenBSD, it could be have present multiples versions of gcc compiler:
- gcc-4.2 (with patchs) : c/c++ compiler present in `/usr/bin`. It is unusable to build recent LLVM (so rustc too).
- gcc/g++ -4.9 : c/c++ compiler, installed as third-party with "ports" mechanism. The compiler is installed in `/usr/local` as `egcc` (and `eg++`).
this PR adds probing for `egcc` for `CFG_GCC`, if the first probed `gcc` is too old. It will set `CC` and `CXX` too, in order to pass the variables to LLVM configure if builded.
please note this PR is a first step in order to build rustc under OpenBSD with unpatched tree.
r? @alexcrichton
cc @brson @dhuseby
Visual Studio 2015, recently released, includes the Universal CRT, a different
flavor than was provided before. The binaries and header files for this library
are included in new locations not previously known about by gcc-rs, and this
commit adds support for the necessary probing to find these.
Unfortunately there are no prior examples of this probing to be found in
frameworks like CMake or clang, so this is done is a bit of a sketchy method
today. It assumes that the installation is in a relatively standard format and
then blindly looks for the location of the UCRT. I'd love to switch this over to
using registry keys for probing, but I was currently unable to find such keys.
This should enable the compiler to work outside VS 2015 dev tools prompts.
Adds support to the configure script for detecting Visual Studio 2015 being
installed and builds LLVM/uses cl with that compiler. The compiler will
automatically use this MSVC linker anyway because it's the highest version.
This has travis build LLVM and rustc up to stage1, but not run any tests. It seems wasteful to have the ultimate might of travis running on every PR just to check for whitespace errors. This is a pure subset of the bootstrap, so it shouldn't ever spuriously break.
`make tidy` still runs first, so we still get \"fast errors\" on bad style. However once make tidy passes, the build will simply keep running to try to make rustc. `tidy` takes ~3 mins to complete, so if your build runs longer you can be confident we've gone on to build LLVM/rustc. In principle this is configured to use ccache (it shows up in the build logs as uploaded/downloaded), but I found no actual performance changes in using it.
Maybe someone at @travis-ci knows what's up with that.
For reference, here is a successful build with ccache enabled: https://travis-ci.org/Gankro/rust/builds/70821237
and one without: https://travis-ci.org/Gankro/rust/builds/70812814
Builds seem to take about 41mins regardless.
r? @alexcrichton
Tidy is still run first for failing fast on the easy stuff.
To accomplish this we have travis actually persist ccache across builds. This
has LLVM built within 6 minutes, and all of stage1 built within 18.
Caching should work on fresh PRs (cache acquired from the master branch).
Because all we persist is ccache, there is minimal danger of persisting corrupt
build state.
I had to mangle `configure` a bit to make --enable-ccache work when custom
compilers are provide via CC and CXX.
This commit modifies the configure script and our makefiles to support building
32-bit MSVC targets. The MSVC toolchain is now parameterized over whether it can
produce a 32-bit or 64-bit binary. The configure script was updated to export
more variables at configure time, and the makefiles were rejiggered to
selectively reexport the relevant environment variables for the applicable
targets they're going to run for.
I've configured with the parameters suggested by @brson in #18670 and
confirmed that it works on Gentoo Linux amd64.
Fixes#18670.
Signed-off-by: OGINO Masanori <masanori.ogino@gmail.com>
The path we pass to rustc will be visible in panic messages and
backtraces: they will be user visible!
Avoid junk in these paths by passing relative paths to rustc.
For most advanced users, `libcore` or `libstd` in the path will be
a clue to the location -- inside our code, not theirs.
Store both the relative path to the source as well as the absolute.
Use the relative path where it matters, compiling the main crates,
instead of changing all of the build process to cope with relative
paths.
Example output after this patch:
```
$ ./testunwrap
thread '<main>' panicked at 'called `Option::unwrap()` on a `None` value', ../src/libcore/option.rs:362
$ RUST_BACKTRACE=1 ./testunwrap
thread '<main>' panicked at 'called `Option::unwrap()` on a `None` value', ../src/libcore/option.rs:362
stack backtrace:
1: 0x7ff59c1e9956 - sys::backtrace::write::h67a542fd2b201576des
at ../src/libstd/sys/unix/backtrace.rs:158
2: 0x7ff59c1ed5b6 - panicking::on_panic::h3d21c41cdd5c12d41Xw
at ../src/libstd/panicking.rs:58
3: 0x7ff59c1e7b6e - rt::unwind::begin_unwind_inner::h9f3a5440cebb8baeLDw
at ../src/libstd/rt/unwind/mod.rs:273
4: 0x7ff59c1e7f84 - rt::unwind::begin_unwind_fmt::h4fe8a903e0c296b0RCw
at ../src/libstd/rt/unwind/mod.rs:212
5: 0x7ff59c1eced7 - rust_begin_unwind
6: 0x7ff59c22c11a - panicking::panic_fmt::h00b0cd49c98a9220i5B
at ../src/libcore/panicking.rs:64
7: 0x7ff59c22b9e0 - panicking::panic::hf549420c0ee03339P3B
at ../src/libcore/panicking.rs:45
8: 0x7ff59c1e621d - option::Option<T>::unwrap::h501963526474862829
9: 0x7ff59c1e61b1 - main::hb5c91ce92347d1e6eaa
10: 0x7ff59c1f1c18 - rust_try_inner
11: 0x7ff59c1f1c05 - rust_try
12: 0x7ff59c1ef374 - rt::lang_start::h7e51e19c6677cffe5Sw
at ../src/libstd/rt/unwind/mod.rs:147
at ../src/libstd/rt/unwind/mod.rs:130
at ../src/libstd/rt/mod.rs:128
13: 0x7ff59c1e628e - main
14: 0x7ff59b3f6b44 - __libc_start_main
15: 0x7ff59c1e6078 - <unknown>
16: 0x0 - <unknown>
```
Bug fixes for configure on FreeBSD:
- Don't ban using gcc; newer versions can be installed and other checks should enforce its suitability.
- Don't force Rust to link itself with /usr/local/lib{,gcc4[46]}, which causes builds to fail if Rust is already installed. I've not been able to find an use case where this is actually necessary.
This commit adds a ./configure option called `--disable-elf-tls` which disables
ELF based TLS (that which is communicated to LLVM) on platforms which already
support it. OSX 10.6 does not support this form of TLS, and some users of Rust
need to target 10.6 and are unable to do so due to the usage of TLS. The
standard library will continue to use ELF based TLS on OSX by default (as the
officially supported platform is 10.7+), but this adds an option to compile the
standard library in a way that is compatible with 10.6.
Closes#25342
This commit adds a ./configure option called `--disable-elf-tls` which disables
ELF based TLS (that which is communicated to LLVM) on platforms which already
support it. OSX 10.6 does not support this form of TLS, and some users of Rust
need to target 10.6 and are unable to do so due to the usage of TLS. The
standard library will continue to use ELF based TLS on OSX by default (as the
officially supported platform is 10.7+), but this adds an option to compile the
standard library in a way that is compatible with 10.6.
Currently, there are two conditional blocks that exist to check for "clang or gcc"
On line 866:
```
if [ -z "$CFG_ENABLE_CLANG" -a -z "$CFG_GCC" ]
then
err "either clang or gcc is required"
fi
```
and on line 1019:
```
if [ -z "$CC" -a -z "$CFG_ENABLE_CLANG" -a -z "$CFG_GCC" ]
then
err "either clang or gcc is required"
fi
```
Given the order of the clauses, this results in the "either clang or gcc is required" error from the earlier block, (even) when CC is set.
The expected behaviour is to honour user-flags, in this case CC.
Aside from removing all hand-holdy compiler checks in favour of actual compiler *feature* checks, this change removes the redundant former block in favour of the latter block, which appears designed to allow the expected behaviour.
The `run` function passed its argument to `msg` via `"$@"`, but `msg`
only printed its first argument. I think the intention was for `msg` to
print all its arguments. (If not, `run` should only `msg "$1"`.)
Took me a moment to figure out that the appropriate response to
"need program file" was to install the program named "file", not
to think "If I didn't need the program file, why would I be
compiling things?".
the "-c" option of head isn't a posix option, and it isn't supported
under openbsd.
prefer the use of cut -c 1-8 (which is posix) to extract the first 8
chars.