Improve suggestions for returning binding
Fixes#99525
Also reworks the cause codes for match and if a bit, I think cleaning them up in a positive way.
We no longer need to call `could_remove_semicolon` in successful code, which might save a few cycles?
Remove the unused StableSet and StableMap types from rustc_data_structures.
The current implementation is not "stable" in the same sense that `HashStable` and `StableHasher` are stable, i.e. across compilation sessions. So, in my opinion, it's better to remove those types (which are basically unused anyway) than to give the wrong impression that these are safe for incr. comp.
I plan to provide new "stable" collection types soon that can be used to replace `FxHashMap` and `FxHashSet` in query results (see [draft](69d03ac7a7)). It's unsound that `HashMap` and `HashSet` implement `HashStable` (see https://github.com/rust-lang/rust/issues/98890 for a recent P-critical bug caused by this) -- so we should make some progress there.
Formalize defining_use_anchor
This tackles issue #57961
Introduces new enum called `DefiningAnchor` that replaces `Option<LocalDefId>` of `defining_use_anchor`. Now every use of it is explicit and exhaustively matched, catching errors like one in the linked issue. This is not a perfect fix but it's a step in the right direction.
r? `@oli-obk`
Do not allow typeck children items to constrain outer RPITs
Fixes#99073 in a simpler and more conservative way than #99079. Simply raise a mismatched types error if we try to constrain an RPIT in an item that isn't the RPIT's parent.
r? `@oli-obk`
Remove some usages of `guess_head_span`
No need to pass things through `guess_head_span` if they already point to the head span.
Only major change is that we point to the head span of `enum`s on some errors now, which I prefer.
r? `@cjgillot`
Move abstract const to middle
Moves AbstractConst (and all associated methods) to rustc middle for use in `rustc_infer`.
This allows for const resolution in infer to use abstract consts to walk consts and check if
they are resolvable.
This attempts to resolve the issue where `Foo<{ concrete const }, generic T>` is incorrectly marked as conflicting, and is independent from the other issue where nested abstract consts must be resolved.
r? `@lcnr`
Implement `for<>` lifetime binder for closures
This PR implements RFC 3216 ([TI](https://github.com/rust-lang/rust/issues/97362)) and allows code like the following:
```rust
let _f = for<'a, 'b> |a: &'a A, b: &'b B| -> &'b C { b.c(a) };
// ^^^^^^^^^^^--- new!
```
cc ``@Aaron1011`` ``@cjgillot``
don't use `commit_if_ok` during `higher_ranked_sub`
This snapshot doesn't really do anything useful for us, especially once we deal with placeholder outlive bounds during trait solving.
I guess that currently the idea is that `higher_ranked_sub` could cause a later `leak_check` to fail even if the combine operation isn't actually relevant. But really, using combine outside of snapshot and ignoring its result is wrong anyways, as it can constrain inference variables.
r? rust-lang/types
don't succeed `evaluate_obligation` query if new opaque types were registered
fixes#98608fixes#98604
The root cause of all this is that in type flag computation we entirely ignore nongeneric things like struct fields and the signature of function items. So if a flag had to be set for a struct if it is set for a field, that will only happen if the field is generic, as only the generic parameters are checked.
I now believe we cannot use type flags to handle opaque types. They seem like the wrong tool for this.
Instead, this PR replaces the previous logic by adding a new variant of `EvaluatedToOk`: `EvaluatedToOkModuloOpaqueTypes`, which says that there were some opaque types that got hidden types bound, but that binding may not have been legal (because we don't know if the opaque type was in its defining scope or not).
Make TAIT behave exactly like RPIT
fixes https://github.com/rust-lang/rust/issues/96552
This makes type-alias-impl-trait behave like return-position-impl-trait. Unfortunately it also causes some cases to stop compiling due to "needing type annotations" and makes panicking cause fallback for the hidden type to `()`.
All of these are addressable, but we should probably address them for RPIT and TAIT together
r? ``@lcnr``
Avoid some `&str` to `String` conversions with `MultiSpan::push_span_label`
This patch removes some`&str` to `String` conversions with `MultiSpan::push_span_label`.
Clean up arg mismatch diagnostic, generalize tuple wrap suggestion
This is based on top of #97542, so just look at the last commit which contains the relevant changes.
1. Remove `final_arg_types` which was one of the last places we were using raw (`usize`) indices instead of typed indices in the arg mismatch suggestion code.
2. Improve the tuple wrap suggestion, now we suggest things like `call(a, b, c, d)` -> `call(a, (b, c), d)` 😺
3. Folded in fix#98645
Reverse folder hierarchy
#91318 introduced a trait for infallible folders distinct from the fallible version. For some reason (completely unfathomable to me now that I look at it with fresh eyes), the infallible trait was a supertrait of the fallible one: that is, all fallible folders were required to also be infallible. Moreover the `Error` associated type was defined on the infallible trait! It's so absurd that it has me questioning whether I was entirely sane.
This trait reverses the hierarchy, so that the fallible trait is a supertrait of the infallible one: all infallible folders are required to also be fallible (which is a trivial blanket implementation). This of course makes much more sense! It also enables the `Error` associated type to sit on the fallible trait, where it sensibly belongs.
There is one downside however: folders expose a `tcx` accessor method. Since the blanket fallible implementation for infallible folders only has access to a generic `F: TypeFolder`, we need that trait to expose such an accessor to which we can delegate. Alternatively it's possible to extract that accessor into a separate `HasTcx` trait (or similar) that would then be a supertrait of both the fallible and infallible folder traits: this would ensure that there's only one unambiguous `tcx` method, at the cost of a little additional boilerplate. If desired, I can submit that as a separate PR.
r? ````@jackh726````
fix universes in the NLL type tests
In the NLL code, we were not accommodating universes in the
`type_test` logic.
Fixes#98095.
r? `@compiler-errors`
This breaks some tests, however, so the purpose of this branch is more explanatory and perhaps to do a crater run.
Point at return expression for RPIT-related error
Certainly this needs some diagnostic refining, but I wanted to show that it was possible first and foremost. Not sure if this is the right approach. Open to feedback.
Fixes#80583
lub: don't bail out due to empty binders
allows for the following to compile. The equivalent code using `struct Wrapper<'upper>(fn(&'upper ());` already compiles on stable.
```rust
let _: fn(&'upper ()) = match v {
true => lt_in_fn::<'a>(),
false => lt_in_fn::<'b>(),
};
```
see https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=7034a677190110941223cafac6632f70 for a complete example
r? ```@rust-lang/types```
#91318 introduced a trait for infallible folders distinct from the fallible version. For some reason (completely unfathomable to me now that I look at it with fresh eyes), the infallible trait was a supertrait of the fallible one: that is, all fallible folders were required to also be infallible. Moreover the `Error` associated type was defined on the infallible trait! It's so absurd that it has me questioning whether I was entirely sane.
This trait reverses the hierarchy, so that the fallible trait is a supertrait of the infallible one: all infallible folders are required to also be fallible (which is a trivial blanket implementation). This of course makes much more sense! It also enables the `Error` associated type to sit on the fallible trait, where it sensibly belongs.
There is one downside however: folders expose a `tcx` accessor method. Since the blanket fallible implementation for infallible folders only has access to a generic `F: TypeFolder`, we need that trait to expose such an accessor to which we can delegate. Alternatively it's possible to extract that accessor into a separate `HasTcx` trait (or similar) that would then be a supertrait of both the fallible and infallible folder traits: this would ensure that there's only one unambiguous `tcx` method, at the cost of a little additional boilerplate. If desired, I can submit that as a separate PR.
r? @jackh726
The code now accepts `Binder<OutlivesPredicate>`
instead of just `OutlivesPredicate` and thus exercises
the new, generalized `IfEqBound` codepaths. Note though
that we never *produce* Binder<OutlivesPredicate>, so we
are only testing a subset of those codepaths that excludes
actual higher-ranked outlives bounds.