On 32-bit ARM platforms, the register `r14` has the alias `lr`. When used as an output register in `asm!`, rustc canonicalizes the name to `r14`. LLVM only knows the register by the name `lr`, and rejects it. This changes rustc's LLVM code generation to output `lr` instead.
Improve SIMD type element count validation
Resolvesrust-lang/stdsimd#53.
These changes are motivated by `stdsimd` moving in the direction of const generic vectors, e.g.:
```rust
#[repr(simd)]
struct SimdF32<const N: usize>([f32; N]);
```
This makes a few changes:
* Establishes a maximum SIMD lane count of 2^16 (65536). This value is arbitrary, but attempts to validate lane count before hitting potential errors in the backend. It's not clear what LLVM's maximum lane count is, but cranelift's appears to be much less than `usize::MAX`, at least.
* Expands some SIMD intrinsics to support arbitrary lane counts. This resolves the ICE in the linked issue.
* Attempts to catch invalid-sized vectors during typeck when possible.
Unresolved questions:
* Generic-length vectors can't be validated in typeck and are only validated after monomorphization while computing layout. This "works", but the errors simply bail out with no context beyond the name of the type. Should these errors instead return `LayoutError` or otherwise provide context in some way? As it stands, users of `stdsimd` could trivially produce monomorphization errors by making zero-length vectors.
cc `@bjorn3`
Avoid a hir access inside get_static
Together with #81056 this ensures that the codegen unit DepNode doesn't have a direct dependency on any part of the hir.
Add a new ABI to support cmse_nonsecure_call
This adds support for the `cmse_nonsecure_call` feature to be able to perform non-secure function call.
See the discussion on Zulip [here](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Support.20for.20callsite.20attributes/near/223054928).
This is a followup to #75810 which added `cmse_nonsecure_entry`. As for that PR, I assume that the changes are small enough to not have to go through a RFC but I don't mind doing one if needed 😃
I did not yet create a tracking issue, but if most of it is fine, I can create one and update the various files accordingly (they refer to the other tracking issue now).
On the Zulip chat, I believe `@jonas-schievink` volunteered to be a reviewer 💯
Add AArch64 big-endian and ILP32 targets
This PR adds 3 new AArch64 targets:
- `aarch64_be-unknown-linux-gnu`
- `aarch64-unknown-linux-gnu_ilp32`
- `aarch64_be-unknown-linux-gnu_ilp32`
It also fixes some ABI issues on big-endian ARM and AArch64.
This commit adds a new ABI to be selected via `extern
"C-cmse-nonsecure-call"` on function pointers in order for the compiler to
apply the corresponding cmse_nonsecure_call callsite attribute.
For Armv8-M targets supporting TrustZone-M, this will perform a
non-secure function call by saving, clearing and calling a non-secure
function pointer using the BLXNS instruction.
See the page on the unstable book for details.
Signed-off-by: Hugues de Valon <hugues.devalon@arm.com>
rustc: Stabilize `-Zrun-dsymutil` as `-Csplit-debuginfo`
This commit adds a new stable codegen option to rustc,
`-Csplit-debuginfo`. The old `-Zrun-dsymutil` flag is deleted and now
subsumed by this stable flag. Additionally `-Zsplit-dwarf` is also
subsumed by this flag but still requires `-Zunstable-options` to
actually activate. The `-Csplit-debuginfo` flag takes one of
three values:
* `off` - This indicates that split-debuginfo from the final artifact is
not desired. This is not supported on Windows and is the default on
Unix platforms except macOS. On macOS this means that `dsymutil` is
not executed.
* `packed` - This means that debuginfo is desired in one location
separate from the main executable. This is the default on Windows
(`*.pdb`) and macOS (`*.dSYM`). On other Unix platforms this subsumes
`-Zsplit-dwarf=single` and produces a `*.dwp` file.
* `unpacked` - This means that debuginfo will be roughly equivalent to
object files, meaning that it's throughout the build directory
rather than in one location (often the fastest for local development).
This is not the default on any platform and is not supported on Windows.
Each target can indicate its own default preference for how debuginfo is
handled. Almost all platforms default to `off` except for Windows and
macOS which default to `packed` for historical reasons.
Some equivalencies for previous unstable flags with the new flags are:
* `-Zrun-dsymutil=yes` -> `-Csplit-debuginfo=packed`
* `-Zrun-dsymutil=no` -> `-Csplit-debuginfo=unpacked`
* `-Zsplit-dwarf=single` -> `-Csplit-debuginfo=packed`
* `-Zsplit-dwarf=split` -> `-Csplit-debuginfo=unpacked`
Note that `-Csplit-debuginfo` still requires `-Zunstable-options` for
non-macOS platforms since split-dwarf support was *just* implemented in
rustc.
There's some more rationale listed on #79361, but the main gist of the
motivation for this commit is that `dsymutil` can take quite a long time
to execute in debug builds and provides little benefit. This means that
incremental compile times appear that much worse on macOS because the
compiler is constantly running `dsymutil` over every single binary it
produces during `cargo build` (even build scripts!). Ideally rustc would
switch to not running `dsymutil` by default, but that's a problem left
to get tackled another day.
Closes#79361
This commit adds a new stable codegen option to rustc,
`-Csplit-debuginfo`. The old `-Zrun-dsymutil` flag is deleted and now
subsumed by this stable flag. Additionally `-Zsplit-dwarf` is also
subsumed by this flag but still requires `-Zunstable-options` to
actually activate. The `-Csplit-debuginfo` flag takes one of
three values:
* `off` - This indicates that split-debuginfo from the final artifact is
not desired. This is not supported on Windows and is the default on
Unix platforms except macOS. On macOS this means that `dsymutil` is
not executed.
* `packed` - This means that debuginfo is desired in one location
separate from the main executable. This is the default on Windows
(`*.pdb`) and macOS (`*.dSYM`). On other Unix platforms this subsumes
`-Zsplit-dwarf=single` and produces a `*.dwp` file.
* `unpacked` - This means that debuginfo will be roughly equivalent to
object files, meaning that it's throughout the build directory
rather than in one location (often the fastest for local development).
This is not the default on any platform and is not supported on Windows.
Each target can indicate its own default preference for how debuginfo is
handled. Almost all platforms default to `off` except for Windows and
macOS which default to `packed` for historical reasons.
Some equivalencies for previous unstable flags with the new flags are:
* `-Zrun-dsymutil=yes` -> `-Csplit-debuginfo=packed`
* `-Zrun-dsymutil=no` -> `-Csplit-debuginfo=unpacked`
* `-Zsplit-dwarf=single` -> `-Csplit-debuginfo=packed`
* `-Zsplit-dwarf=split` -> `-Csplit-debuginfo=unpacked`
Note that `-Csplit-debuginfo` still requires `-Zunstable-options` for
non-macOS platforms since split-dwarf support was *just* implemented in
rustc.
There's some more rationale listed on #79361, but the main gist of the
motivation for this commit is that `dsymutil` can take quite a long time
to execute in debug builds and provides little benefit. This means that
incremental compile times appear that much worse on macOS because the
compiler is constantly running `dsymutil` over every single binary it
produces during `cargo build` (even build scripts!). Ideally rustc would
switch to not running `dsymutil` by default, but that's a problem left
to get tackled another day.
Closes#79361
Refractor a few more types to `rustc_type_ir`
In the continuation of #79169, ~~blocked on that PR~~.
This PR:
- moves `IntVarValue`, `FloatVarValue`, `InferTy` (and friends) and `Variance`
- creates the `IntTy`, `UintTy` and `FloatTy` enums in `rustc_type_ir`, based on their `ast` and `chalk_ir` equilavents, and uses them for types in the rest of the compiler.
~~I will split up that commit to make this easier to review and to have a better commit history.~~
EDIT: done, I split the PR in commits of 200-ish lines each
r? `````@nikomatsakis````` cc `````@jackh726`````
Target stack-probe support configurable finely
This adds capability to configure the target's stack probe support in a
more precise manner than just on/off. In particular now we allow
choosing between always inline-asm, always call or either one of those
depending on the LLVM version.
Note that this removes the ability to turn off the generation of the
stack-probe attribute. This is valid to replace it with inline-asm for all targets because
`probe-stack="inline-asm"` will not generate any machine code on targets
that do not currently support stack probes. This makes support for stack
probes on targets that don't have any right now automatic with LLVM
upgrades in the future.
(This is valid to do based on the fact that clang unconditionally sets
this attribute when `-fstack-clash-protection` is used, AFAICT)
cc #77885
r? `@cuviper`
Use Option::unwrap_or instead of open-coding it
r? ```@oli-obk``` Noticed this while we were talking about the other PR just now 😆
```@rustbot``` modify labels +C-cleanup +T-compiler
This adds capability to configure the target's stack probe support in a
more precise manner than just on/off. In particular now we allow
choosing between always inline-asm, always call or either one of those
depending on the LLVM version on a per-target basis.
Make target-cpu=native detect individual features
This PR makes target-cpu=native check for and enable/disable individual features instead of detecting and targeting a CPU by name. This brings the flag's behavior more in line with clang and gcc and ensures that the host actually supports each feature that we are compiling for.
This should resolve issues with miscompilations on e.g. "Haswell" Pentiums and Celerons that lack support for AVX, and also enable support for `aes` on Broadwell processors that support it. It should also resolve issues with failing to detect feature support in newer CPUs that aren't yet known by LLVM (see: #80633).
Fixes#54688Fixes#48464Fixes#38218
Update and improve `rustc_codegen_{llvm,ssa}` docs
Fixes#75342.
These docs were very out of date and misleading. They even said that
they codegen'd the *AST*!
For some reason, the `rustc_codegen_ssa::base` docs were exactly
identical to the `rustc_codegen_llvm::base` docs. They didn't really
make sense, because they had LLVM-specific information even though
`rustc_codegen_ssa` is supposed to be somewhat generic. So I removed
them as they were misleading.
r? ``@pnkfelix`` maybe?
remove unused return type of dropck::check_drop_obligations()
don't wrap return type in Option in get_macro_by_def_id() since we would always return Some(..)
remove redundant return type of back::write::optimize()
don't Option-wrap return type of compute_type_parameters() since we always return Some(..)
don't return empty Result in assemble_generator_candidates()
don't return empty Result in assemble_closure_candidates()
don't return empty result in assemble_fn_pointer_candidates()
don't return empty result in assemble_candidates_from_impls()
don't return empty result in assemble_candidates_from_auto_impls()
don't return emtpy result in assemble_candidates_for_trait_alias()
don't return empty result in assemble_builtin_bound_candidates()
don't return empty results in assemble_extension_candidates_for_traits_in_scope() and assemble_extension_candidates_for_trait()
remove redundant wrapping of return type of StripItem::strip() since it always returns Some(..)
remove unused return type of assemble_extension_candidates_for_all_traits()
These docs were very out of date and misleading. They even said that
they codegen'd the *AST*!
For some reason, the `rustc_codegen_ssa::base` docs were exactly
identical to the `rustc_codegen_llvm::base` docs. They didn't really
make sense, because they had LLVM-specific information even though
`rustc_codegen_ssa` is supposed to be somewhat generic. So I removed
them as they were misleading.
llvm-dwp concatenates `DW_AT_comp_dir` with `DW_AT_GNU_dwo_name` (only
when `DW_AT_comp_dir` exists), which can result in it failing to find
the DWARF object files.
In earlier testing, `DW_AT_comp_dir` wasn't present in the final
object and the current directory was the output directory.
When running tests through compiletest, the working directory of the
compilation is different from output directory and that resulted in
`DW_AT_comp_dir` being in the object file (and set to the current
working directory, rather than the output directory), and
`DW_AT_GNU_dwo_name` being set to the full path (rather than just
the filename), so llvm-dwp was failing.
This commit changes the compilation directory provided to LLVM to match
the output directory, where DWARF objects are output; and ensures that
only the filename is used for `DW_AT_GNU_dwo_name`.
Signed-off-by: David Wood <david@davidtw.co>
This commit implements Split DWARF support, wiring up the flag (added in
earlier commits) to the modified FFI wrapper (also from earlier
commits).
Signed-off-by: David Wood <david@davidtw.co>
This commit removes the `TargetMachineFactory` struct and adds a
`TargetMachineFactoryFn` type alias which is used everywhere that the
previous, long type was used.
Signed-off-by: David Wood <david@davidtw.co>
This commit modifies the FFI bindings to LLVM required for Split DWARF
support in rustc. In particular:
- `addPassesToEmitFile`'s wrapper, `LLVMRustWriteOutputFile` now takes
a `DwoPath` `const char*`. When disabled, `nullptr` should be provided
which will preserve existing behaviour. When enabled, the path to the
`.dwo` file should be provided.
- `createCompileUnit`'s wrapper, `LLVMRustDIBuilderCreateCompileUnit`
now has two additional arguments, for the `DWOId` and to enable
`SplitDebugInlining`. `DWOId` should always be zero.
- `createTargetMachine`'s wrapper, `LLVMRustCreateTargetMachine` has an
additional argument which should be provided the path to the `.dwo`
when enabled.
Signed-off-by: David Wood <david@davidtw.co>
[mir-opt] Allow debuginfo to be generated for a constant or a Place
Prior to this commit, debuginfo was always generated by mapping a name
to a Place. This has the side-effect that `SimplifyLocals` cannot remove
locals that are only used for debuginfo because their other uses have
been const-propagated.
To allow these locals to be removed, we now allow debuginfo to point to
a constant value. The `ConstProp` pass detects when debuginfo points to
a local with a known constant value and replaces it with the value. This
allows the later `SimplifyLocals` pass to remove the local.
Fixes: #79725
Some macros can create a situation where `fn_sig_span` and `body_span`
map to different files.
New documentation on coverage tests incorrectly assumed multiple test
binaries could just be listed at the end of the `llvm-cov` command,
but it turns out each binary needs a `--object` prefix.
This PR fixes the bug and updates the documentation to correct that
issue. It also fixes a few other minor issues in internal implementation
comments, and adds documentation on getting coverage results for doc
tests.
Prior to this commit, debuginfo was always generated by mapping a name
to a Place. This has the side-effect that `SimplifyLocals` cannot remove
locals that are only used for debuginfo because their other uses have
been const-propagated.
To allow these locals to be removed, we now allow debuginfo to point to
a constant value. The `ConstProp` pass detects when debuginfo points to
a local with a known constant value and replaces it with the value. This
allows the later `SimplifyLocals` pass to remove the local.