Tracking import use types for more accurate redundant import checking
fixes#117448
By tracking import use types to check whether it is scope uses or the other situations like module-relative uses, we can do more accurate redundant import checking.
For example unnecessary imports in std::prelude that can be eliminated:
```rust
use std::option::Option::Some;//~ WARNING the item `Some` is imported redundantly
use std::option::Option::None; //~ WARNING the item `None` is imported redundantly
```
fixes#117448
For example unnecessary imports in std::prelude that can be eliminated:
```rust
use std::option::Option::Some;//~ WARNING the item `Some` is imported redundantly
use std::option::Option::None; //~ WARNING the item `None` is imported redundantly
```
Rollup of 7 pull requests
Successful merges:
- #120526 (rustdoc: Correctly handle long crate names on mobile)
- #121100 (Detect when method call on argument could be removed to fulfill failed trait bound)
- #121160 (rustdoc: fix and refactor HTML rendering a bit)
- #121198 (Add more checks for `unnamed_fields` during HIR analysis)
- #121218 (Fix missing trait impls for type in rustc docs)
- #121221 (AstConv: Refactor lowering of associated item bindings a bit)
- #121237 (Use better heuristic for printing Cargo specific diagnostics)
r? `@ghost`
`@rustbot` modify labels: rollup
Add more checks for `unnamed_fields` during HIR analysis
Fixes#121151
I also found that we don't prevent enums here so
```rs
#[repr(C)]
#[derive(Debug)]
enum A {
#[default]
B,
C,
}
#[repr(C)]
#[derive(Debug)]
struct D {
_: A,
}
```
leads to an ICE on an `self.is_struct() || self.is_union()` assertion, so fixed that too.
Properly deal with weak alias types as self types of impls
Fixes#114216.
Fixes#116100.
Not super happy about the two ad hoc “normalization” implementations for weak alias types:
1. In `inherent_impls`: The “peeling”, normalization to [“WHNF”][whnf]: Semantically that's exactly what we want (neither proper normalization nor shallow normalization would be correct here). Basically a weak alias type is “nominal” (well...^^) if the WHNF is nominal. [#97974](https://github.com/rust-lang/rust/pull/97974) followed the same approach.
2. In `constrained_generic_params`: Generic parameters are constrained by a weak alias type if the corresp. “normalized” type constrains them (where we only normalize *weak* alias types not arbitrary ones). Weak alias types are injective if the corresp. “normalized” type is injective.
Both have ad hoc overflow detection mechanisms.
**Coherence** is handled in #117164.
r? `@oli-obk` or types
[whnf]: https://en.wikipedia.org/wiki/Lambda_calculus_definition#Weak_head_normal_form
Use fulfillment in next trait solver coherence
Use fulfillment in the new trait solver's `impl_intersection_has_impossible_obligation` routine. This means that inference that falls out of processing other obligations can influence whether we can determine if an obligation is impossible to satisfy. See the committed test.
This should be completely sound, since evaluation and fulfillment both respect intercrate mode equally.
We run the risk of breaking coherence later if we were to change the rules of fulfillment and/or inference during coherence, but this is a problem which affects evaluation, as nested obligations from a trait goal are processed together and can influence each other in the same way.
r? lcnr
cc #114862
Also changed obligationctxt -> fulfillmentctxt because it feels kind of redundant to use an ocx here. I don't really care enough and can change it back if it really matters much.
const_mut_refs: allow mutable pointers to statics
Fixes https://github.com/rust-lang/rust/issues/118447
Writing this PR became a bit messy, see [Zulip](https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/topic/Statics.20pointing.20to.20interior.20mutable.20statics) for some of my journey.^^ Turns out there was a long-standing bug in our qualif logic that led to us incorrectly classifying certain places as "no interior mut" when they actually had interior mut. Due to that the `const_refs_to_cell` feature gate was required far less often than it otherwise would, e.g. in [this code](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=9e0c042c451b3d11d64dd6263679a164). Fixing this however would be a massive breaking change all over libcore and likely the wider ecosystem. So I also changed the const-checking logic to just not require the feature gate for the affected cases. While doing so I discovered a bunch of logic that is not explained and that I could not explain. However I think stabilizing some const-eval feature will make most of that logic inconsequential so I just added some FIXMEs and left it at that.
r? `@oli-obk`
This fixes the issue wherein the lint didn't fire for promoteds
in the case of SHL/SHR operators in non-optimized builds
and all arithmetic operators in optimized builds
Fix an ICE in the recursion lint
fixes#121170
I looked into it, and there is no good path towards tainting mir_build (where the ICE happens), but using `try_normalize` in a lint seems generally better anyway
allow mutable references in const values when they point to no memory
Fixes https://github.com/rust-lang/rust/issues/120450
The second commit is just some drive-by test suite cleanup.
r? `@oli-obk`
Add clippy into the known `cfg` list
In clippy, we are removing the `feature = "cargo-clippy"` cfg to replace it with `clippy` in https://github.com/rust-lang/rust-clippy/pull/12292. But for it to work, we need to declare `clippy` as cfg. It makes it more coherent with other existing tools like rustdoc.
cc `@flip1995`
Avoid an ICE in diagnostics
fixes#121004
just a slice usage in diagnostics code. Sadly we can't yet bubble the `ErrorGuaranteed` from wf check to borrowck for these cases, as that causes cycle errors iirc
Implement intrinsics with fallback bodies
fixes#93145 (though we can port many more intrinsics)
cc #63585
The way this works is that the backend logic for generating custom code for intrinsics has been made fallible. The only failure path is "this intrinsic is unknown". The `Instance` (that was `InstanceDef::Intrinsic`) then gets converted to `InstanceDef::Item`, which represents the fallback body. A regular function call to that body is then codegenned. This is currently implemented for
* codegen_ssa (so llvm and gcc)
* codegen_cranelift
other backends will need to adjust, but they can just keep doing what they were doing if they prefer (though adding new intrinsics to the compiler will then require them to implement them, instead of getting the fallback body).
cc `@scottmcm` `@WaffleLapkin`
### todo
* [ ] miri support
* [x] default intrinsic name to name of function instead of requiring it to be specified in attribute
* [x] make sure that the bodies are always available (must be collected for metadata)
Only point out non-diverging arms for match suggestions
Fixes#121144
There is no reason to point at diverging arms, which will always coerce to whatever is the match block's evaluated type.
This also removes the suggestion from #106601, since as I pointed out in https://github.com/rust-lang/rust/issues/72634#issuecomment-1946210898 the added suggestion is not firing in the right cases, but instead only when one of the match arms already *actually* evaluates to `()`.
r? estebank
Make `async Fn` trait kind errors better
1. Make it so that async closures with the wrong closurekind actually report a useful error
2. Explain why async closures can sometimes not implement `Fn`/`FnMut` (because they capture things)
r? oli-obk
Consider principal trait ref's auto-trait super-traits in dyn upcasting
Given traits like:
```rust
trait Subtrait: Supertrait + Send {}
trait Supertrait {}
```
We should be able to upcast `dyn Subtrait` to `dyn Supertrait + Send`. This is not currently possible, because when upcasting, we look at the list of auto traits in the object type (`dyn Subtrait`, which has no auto traits in its bounds) and compare them to the target's auto traits (`dyn Supertrait + Send`, which has `Send` in its bound).
Since the target has auto traits that are not present in the source, the upcasting fails. This is overly restrictive, since `dyn Subtrait` will always implement `Send` via its built-in object impl. I propose to loosen this restriction here.
r? types
---
### ~~Aside: Fix this in astconv instead?~~
### edit: This causes too many failures. See https://github.com/rust-lang/rust/pull/119825#issuecomment-1890847150
We may also fix this by by automatically elaborating all auto-trait supertraits during `AstConv::conv_object_ty_poly_trait_ref`. That is, we can make it so that `dyn Subtrait` is elaborated into the same type of `dyn Subtrait + Send`.
I'm open to considering this solution instead, but it would break coherence in the following example:
```rust
trait Foo: Send {}
trait Bar {}
impl Bar for dyn Foo {}
impl Bar for dyn Foo + Send {}
//~^ This would begin to be an overlapping impl.
```
Fix msg for verbose suggestions with confusable capitalization
When encountering a verbose/multipart suggestion that has changes that are only caused by different capitalization of ASCII letters that have little differenciation, expand the message to highlight that fact (like we already do for inline suggestions).
The logic to do this was already present, but implemented incorrectly.
Implicitly enable evex512 if avx512 is enabled
LLVM 18 requires the evex512 feature to allow use of zmm registers. LLVM automatically sets it when using a generic CPU, but not when `-C target-cpu` is specified. This will result either in backend legalization crashes, or code unexpectedly using ymm instead of zmm registers.
For now, make sure that `avx512*` features imply `evex512`. Long term we'll probably have to deal with the AVX10 mess somehow.
Fixes https://github.com/rust-lang/rust/issues/121081.
r? `@Amanieu`