Group "missing variable bind" spans in `or` matches and clarify wording
for the two possible cases: when a variable from the first pattern is
not in any of the subsequent patterns, and when a variable in any of the
other patterns is not in the first one.
Before:
```
error[E0408]: variable `a` from pattern #1 is not bound in pattern #2
--> file.rs:10:23
|
10 | T::T1(a, d) | T::T2(d, b) | T::T3(c) | T::T4(a) => { println!("{:?}", a); }
| ^^^^^^^^^^^ pattern doesn't bind `a`
error[E0408]: variable `b` from pattern #2 is not bound in pattern #1
--> file.rs:10:32
|
10 | T::T1(a, d) | T::T2(d, b) | T::T3(c) | T::T4(a) => { println!("{:?}", a); }
| ^ pattern doesn't bind `b`
error[E0408]: variable `a` from pattern #1 is not bound in pattern #3
--> file.rs:10:37
|
10 | T::T1(a, d) | T::T2(d, b) | T::T3(c) | T::T4(a) => { println!("{:?}", a); }
| ^^^^^^^^ pattern doesn't bind `a`
error[E0408]: variable `d` from pattern #1 is not bound in pattern #3
--> file.rs:10:37
|
10 | T::T1(a, d) | T::T2(d, b) | T::T3(c) | T::T4(a) => { println!("{:?}", a); }
| ^^^^^^^^ pattern doesn't bind `d`
error[E0408]: variable `c` from pattern #3 is not bound in pattern #1
--> file.rs:10:43
|
10 | T::T1(a, d) | T::T2(d, b) | T::T3(c) | T::T4(a) => { println!("{:?}", a); }
| ^ pattern doesn't bind `c`
error[E0408]: variable `d` from pattern #1 is not bound in pattern #4
--> file.rs:10:48
|
10 | T::T1(a, d) | T::T2(d, b) | T::T3(c) | T::T4(a) => { println!("{:?}", a); }
| ^^^^^^^^ pattern doesn't bind `d`
error: aborting due to 6 previous errors
```
After:
```
error[E0408]: variable `a` is not bound in all patterns
--> file.rs:20:37
|
20 | T::T1(a, d) | T::T2(d, b) | T::T3(c) | T::T4(a) => {
intln!("{:?}", a); }
| - ^^^^^^^^^^^ ^^^^^^^^ - variable
t in all patterns
| | | |
| | | pattern doesn't bind `a`
| | pattern doesn't bind `a`
| variable not in all patterns
error[E0408]: variable `d` is not bound in all patterns
--> file.rs:20:37
|
20 | T::T1(a, d) | T::T2(d, b) | T::T3(c) | T::T4(a) => {
intln!("{:?}", a); }
| - - ^^^^^^^^ ^^^^^^^^ pattern
esn't bind `d`
| | | |
| | | pattern doesn't bind `d`
| | variable not in all patterns
| variable not in all patterns
error[E0408]: variable `b` is not bound in all patterns
--> file.rs:20:37
|
20 | T::T1(a, d) | T::T2(d, b) | T::T3(c) | T::T4(a) => {
intln!("{:?}", a); }
| ^^^^^^^^^^^ - ^^^^^^^^ ^^^^^^^^ pattern
esn't bind `b`
| | | |
| | | pattern doesn't bind `b`
| | variable not in all patterns
| pattern doesn't bind `b`
error[E0408]: variable `c` is not bound in all patterns
--> file.rs:20:48
|
20 | T::T1(a, d) | T::T2(d, b) | T::T3(c) | T::T4(a) => {
intln!("{:?}", a); }
| ^^^^^^^^^^^ ^^^^^^^^^^^ - ^^^^^^^^ pattern
esn't bind `c`
| | | |
| | | variable not in all
tterns
| | pattern doesn't bind `c`
| pattern doesn't bind `c`
error: aborting due to 4 previous errors
```
* Have only one presentation for binding consistency errors
* Point to same binding in multiple patterns when possible
* Check inconsistent bindings in all arms
* Simplify wording of diagnostic message
* Sort emition and spans of binding errors for deterministic output
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:
```
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
=>
```
pub use self::Foo::{A, B};
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
or
```
pub enum Foo {
A,
B
}
fn main() {
let a = Foo::A;
}
```
[breaking-change]
we now detect inconsistent modes, binding names, and various other errors.
typeck/trans integration is mostly done.
borrowck not so much.
more tests needed.
resolve3 wasn't checking this. Added test cases. Also added a helpful informational
message in the case where you have a variable binding that you probably think
refers to a variant that you forgot to import.
This is easier to do in resolve than in typeck because there's code in typeck
that assumes that each of the patterns binds the same number of variables.