There are types that implement `Clone` and `Copy` but are not mentioned
in the documentation, because the implementations are provided by the
compiler. They are types of variants that cannot be fully covered by
trait implementations in Rust code, because the language is not
expressive enough.
Add implementations of `Clone` and `Copy` for some primitive types to
libcore so that they show up in the documentation. The concerned types
are the following:
* All primitive signed and unsigned integer types (`usize`, `u8`, `u16`,
`u32`, `u64`, `u128`, `isize`, `i8`, `i16`, `i32`, `i64`, `i128`);
* All primitive floating point types (`f32`, `f64`)
* `bool`
* `char`
* `!`
* Raw pointers (`*const T` and `*mut T`)
* Shared references (`&'a T`)
These types already implemented `Clone` and `Copy`, but the
implementation was provided by the compiler. The compiler no longer
provides these implementations and instead tries to look them up as
normal trait implementations. The goal of this change is to make the
implementations appear in the generated documentation.
For `Copy` specifically, the compiler would reject an attempt to write
an `impl` for the primitive types listed above with error `E0206`; this
error no longer occurs for these types, but it will still occur for the
other types that used to raise that error.
The trait implementations are guarded with `#[cfg(not(stage0))]` because
they are invalid according to the stage0 compiler. When the stage0
compiler is updated to a revision that includes this change, the
attribute will have to be removed, otherwise the stage0 build will fail
because the types mentioned above no longer implement `Clone` or `Copy`.
For type variants that are variadic, such as tuples and function
pointers, and for array types, the `Clone` and `Copy` implementations
are still provided by the compiler, because the language is not
expressive enough yet to be able to write the appropriate
implementations in Rust.
The initial plan was to add `impl` blocks guarded by `#[cfg(dox)]` to
make them apply only when generating documentation, without having to
touch the compiler. However, rustdoc's usage of the compiler still
rejected those `impl` blocks.
This is a [breaking-change] for users of `#![no_core]`, because they
will now have to supply their own implementations of `Clone` and `Copy`
for the primitive types listed above. The easiest way to do that is to
simply copy the implementations from `src/libcore/clone.rs` and
`src/libcore/marker.rs`.
Fixes#25893
This PR cuts down on a large number of `#[inline(always)]` and `#[inline]`
annotations in libcore for various core functions. The `#[inline(always)]`
annotation is almost never needed and is detrimental to debug build times as it
forces LLVM to perform inlining when it otherwise wouldn't need to in debug
builds. Additionally `#[inline]` is an unnecessary annoation on almost all
generic functions because the function will already be monomorphized into other
codegen units and otherwise rarely needs the extra "help" from us to tell LLVM
to inline something.
Overall this PR cut the compile time of a [microbenchmark][1] by 30% from 1s to
0.7s.
[1]: https://gist.github.com/alexcrichton/a7d70319a45aa60cf36a6a7bf540dd3a
This commit updates the version number to 1.17.0 as we're not on that version of
the nightly compiler, and at the same time this updates src/stage0.txt to
bootstrap from freshly minted beta compiler and beta Cargo.
This commit introduces 128-bit integers. Stage 2 builds and produces a working compiler which
understands and supports 128-bit integers throughout.
The general strategy used is to have rustc_i128 module which provides aliases for iu128, equal to
iu64 in stage9 and iu128 later. Since nowhere in rustc we rely on large numbers being supported,
this strategy is good enough to get past the first bootstrap stages to end up with a fully working
128-bit capable compiler.
In order for this strategy to work, number of locations had to be changed to use associated
max_value/min_value instead of MAX/MIN constants as well as the min_value (or was it max_value?)
had to be changed to use xor instead of shift so both 64-bit and 128-bit based consteval works
(former not necessarily producing the right results in stage1).
This commit includes manual merge conflict resolution changes from a rebase by @est31.
Improve shallow `Clone` deriving
`Copy` unions now support `#[derive(Clone)]`.
Less code is generated for `#[derive(Clone, Copy)]`.
+
Unions now support `#[derive(Eq)]`.
Less code is generated for `#[derive(Eq)]`.
---
Example of code reduction:
```
enum E {
A { a: u8, b: u16 },
B { c: [u8; 100] },
}
```
Before:
```
fn clone(&self) -> E {
match (&*self,) {
(&E::A { a: ref __self_0, b: ref __self_1 },) => {
::std::clone::assert_receiver_is_clone(&(*__self_0));
::std::clone::assert_receiver_is_clone(&(*__self_1));
*self
}
(&E::B { c: ref __self_0 },) => {
::std::clone::assert_receiver_is_clone(&(*__self_0));
*self
}
}
}
```
After:
```
fn clone(&self) -> E {
{
let _: ::std::clone::AssertParamIsClone<u8>;
let _: ::std::clone::AssertParamIsClone<u16>;
let _: ::std::clone::AssertParamIsClone<[u8; 100]>;
*self
}
}
```
All the matches are removed, bound assertions are more lightweight.
`let _: Checker<CheckMe>;`, unlike `checker(&check_me);`, doesn't have to be translated by rustc_trans and then inlined by LLVM, it doesn't even exist in MIR, this means faster compilation.
---
Union impls are generated like this:
```
union U {
a: u8,
b: u16,
c: [u8; 100],
}
```
```
fn clone(&self) -> U {
{
let _: ::std::clone::AssertParamIsCopy<Self>;
*self
}
}
```
Fixes https://github.com/rust-lang/rust/issues/36043
cc @durka
r? @alexcrichton
Changes #[derive(Copy, Clone)] to use a faster impl of Clone when
both derives are present, and there are no generics in the type.
The faster impl is simply returning *self (which works because the
type is also Copy). See the comments in libsyntax_ext/deriving/clone.rs
for more details.
There are a few types which are Copy but not Clone, in violation
of the definition of Copy. These include large arrays and tuples. The
very existence of these types is arguably a bug, but in order for this
optimization not to change the applicability of #[derive(Copy, Clone)],
the faster Clone impl also injects calls to a new function,
core::clone::assert_receiver_is_clone, to verify that all members are
actually Clone.
This is not a breaking change, because pursuant to RFC 1521, any type
that implements Copy should not do any observable work in its Clone
impl.
This commit shards the broad `core` feature of the libcore library into finer
grained features. This split groups together similar APIs and enables tracking
each API separately, giving a better sense of where each feature is within the
stabilization process.
A few minor APIs were deprecated along the way:
* Iterator::reverse_in_place
* marker::NoCopy
This method hasn't really changed since is inception, and it can often be a
nice performance win for some situations. This method also imposes no burden on
implementors or users of `Clone` as it's just a default method on the side.
This method hasn't really changed since is inception, and it can often be a
nice performance win for some situations. This method also imposes no burden on
implementors or users of `Clone` as it's just a default method on the side.
We only implemented Clone on `extern "Rust" fn`s (for up to 8
parameters). This didn't cover `extern "C"` or `unsafe` (or `unsafe
extern "C"`) `fn`s, but there's no reason why they shouldn't be
cloneable as well.
The new impls are marked unstable because the existing impl for `extern
"Rust" fn`s is.
Fixes#24161.
This gets rid of the 'experimental' level, removes the non-staged_api
case (i.e. stability levels for out-of-tree crates), and lets the
staged_api attributes use 'unstable' and 'deprecated' lints.
This makes the transition period to the full feature staging design
a bit nicer.
This patch marks `clone` stable, as well as the `Clone` trait, but
leaves `clone_from` unstable. The latter will be decided by the beta.
The patch also marks most manual implementations of `Clone` as stable,
except where the APIs are otherwise deprecated or where there is
uncertainty about providing `Clone`.
followed by a semicolon.
This allows code like `vec![1i, 2, 3].len();` to work.
This breaks code that uses macros as statements without putting
semicolons after them, such as:
fn main() {
...
assert!(a == b)
assert!(c == d)
println(...);
}
It also breaks code that uses macros as items without semicolons:
local_data_key!(foo)
fn main() {
println("hello world")
}
Add semicolons to fix this code. Those two examples can be fixed as
follows:
fn main() {
...
assert!(a == b);
assert!(c == d);
println(...);
}
local_data_key!(foo);
fn main() {
println("hello world")
}
RFC #378.
Closes#18635.
[breaking-change]