Document that `assert!` format arguments are evaluated lazily
It can be useful to do some computation in `assert!` format arguments, in order to get better error messages. For example:
```rust
assert!(
some_condition,
"The state is invalid. Details: {}",
expensive_call_to_get_debugging_info(),
);
```
It seems like `assert!` only evaluates the format arguments if the assertion fails, which is useful but doesn't appear to be documented anywhere. This PR documents the behavior and adds some tests.
To digit simplification
I found out the other day that all the ascii digits have the first four bits as one would hope them to. (Eg. char `2` ends `0b0010`). There are two bits to indicate it's in the digit range ( `0b0011_0000`). If it is a true digit then all the higher bits aside from these two will be 0 (as ascii is the lowest part of the unicode u32 spectrum). So XORing with `0b11_0000` should mean we either get the number 0-9 or alternativly we get a larger number in the u32 space. If we get something that's not 0-9 then it will be discarded as it will be greater than the radix.
The code seems so fast though that there's quite a lot of noise in the benchmarks so it's not that easy to prove conclusively that it's faster as well as less instructions.
The non-fast path I was toying with as well wondering if we could do this as then we'd only have one return and less instructions still:
```
match self {
'a'..='z' => self as u32 - 'a' as u32 + 10,
'A'..='Z' => self as u32 - 'A' as u32 + 10,
_ => { radix = 10; self as u32 ^ ASCII_DIGIT_MASK},
}
```
Here's the [godbolt](https://godbolt.org/z/883c9n).
( H/T to ``@byteshadow`` for pointing out xor was what I needed)
It can be useful to do some computation in `assert!` format arguments, in order to get better error messages. For example:
```rust
assert!(
some_condition,
"The state is invalid. Details: {}",
expensive_call_to_get_debugging_info(),
);
```
It seems like `assert!` only evaluates the format arguments if the assertion fails, which is useful but doesn't appear to be documented anywhere. This PR documents the behavior and adds some tests.
Increment `self.index` before calling `Iterator::self.a.__iterator_ge…
…`t_unchecked` in `Zip` `TrustedRandomAccess` specialization
Otherwise if `Iterator::self.a.__iterator_get_unchecked` panics the
index would not have been incremented yet and another call to
`Iterator::next` would read from the same index again, which is not
allowed according to the API contract of `TrustedRandomAccess` for
`!Clone`.
Fixes https://github.com/rust-lang/rust/issues/81740
Bump stabilization version for const int methods
These methods missed the beta cutoff. See #80962 for details.
`@rustbot` modify labels to +A-const-fn, +A-intrinsics
r? `@m-ou-se`
Expand the docs for ops::ControlFlow a bit
Since I was writing some examples for an RFC anyway.
And I almost made the mistake of reordering the variants, so added a note and a test about that.
Stabilize remaining integer methods as `const fn`
This pull request stabilizes the following methods as `const fn`:
- `i*::checked_div`
- `i*::checked_div_euclid`
- `i*::checked_rem`
- `i*::checked_rem_euclid`
- `i*::div_euclid`
- `i*::overflowing_div`
- `i*::overflowing_div_euclid`
- `i*::overflowing_rem`
- `i*::overflowing_rem_euclid`
- `i*::rem_euclid`
- `i*::wrapping_div`
- `i*::wrapping_div_euclid`
- `i*::wrapping_rem`
- `i*::wrapping_rem_euclid`
- `u*::checked_div`
- `u*::checked_div_euclid`
- `u*::checked_rem`
- `u*::checked_rem_euclid`
- `u*::div_euclid`
- `u*::overflowing_div`
- `u*::overflowing_div_euclid`
- `u*::overflowing_rem`
- `u*::overflowing_rem_euclid`
- `u*::rem_euclid`
- `u*::wrapping_div`
- `u*::wrapping_div_euclid`
- `u*::wrapping_rem`
- `u*::wrapping_rem_euclid`
These can all be implemented on the current stable (1.49). There are two unstable details: const likely/unlikely and unchecked division/remainder. Both of these are for optimizations, and are in no way required to make the methods function; there is no exposure of these details publicly. Per comments below, it seems best practice is to stabilize the intrinsics. As such, `intrinsics::unchecked_div` and `intrinsics::unchecked_rem` have been stabilized as `const` as part of this pull request as well. The methods themselves remain unstable.
I believe part of the reason these were not stabilized previously was the behavior around division by 0 and modulo 0. After testing on nightly, the diagnostic for something like `const _: i8 = 5i8 % 0i8;` is similar to that of `const _: i8 = 5i8.rem_euclid(0i8);` (assuming the appropriate feature flag is enabled). As such, I believe these methods are ready to be stabilized as `const fn`.
This pull request represents the final methods mentioned in #53718. As such, this PR closes#53718.
`@rustbot` modify labels to +A-const-fn, +T-libs
expand/resolve: Turn `#[derive]` into a regular macro attribute
This PR turns `#[derive]` into a regular attribute macro declared in libcore and defined in `rustc_builtin_macros`, like it was previously done with other "active" attributes in https://github.com/rust-lang/rust/pull/62086, https://github.com/rust-lang/rust/pull/62735 and other PRs.
This PR is also a continuation of #65252, #69870 and other PRs linked from them, which layed the ground for converting `#[derive]` specifically.
`#[derive]` still asks `rustc_resolve` to resolve paths inside `derive(...)`, and `rustc_expand` gets those resolution results through some backdoor (which I'll try to address later), but otherwise `#[derive]` is treated as any other macro attributes, which simplifies the resolution-expansion infra pretty significantly.
The change has several observable effects on language and library.
Some of the language changes are **feature-gated** by [`feature(macro_attributes_in_derive_output)`](https://github.com/rust-lang/rust/issues/81119).
#### Library
- `derive` is now available through standard library as `{core,std}::prelude::v1::derive`.
#### Language
- `derive` now goes through name resolution, so it can now be renamed - `use derive as my_derive; #[my_derive(Debug)] struct S;`.
- `derive` now goes through name resolution, so this resolution can fail in corner cases. Crater found one such regression, where import `use foo as derive` goes into a cycle with `#[derive(Something)]`.
- **[feature-gated]** `#[derive]` is now expanded as any other attributes in left-to-right order. This allows to remove the restriction on other macro attributes following `#[derive]` (https://github.com/rust-lang/reference/issues/566). The following macro attributes become a part of the derive's input (this is not a change, non-macro attributes following `#[derive]` were treated in the same way previously).
- `#[derive]` is now expanded as any other attributes in left-to-right order. This means two derive attributes `#[derive(Foo)] #[derive(Bar)]` are now expanded separately rather than together. It doesn't generally make difference, except for esoteric cases. For example `#[derive(Foo)]` can now produce an import bringing `Bar` into scope, but previously both `Foo` and `Bar` were required to be resolved before expanding any of them.
- **[feature-gated]** `#[derive()]` (with empty list in parentheses) actually becomes useful. For historical reasons `#[derive]` *fully configures* its input, eagerly evaluating `cfg` everywhere in its target, for example on fields.
Expansion infra doesn't do that for other attributes, but now when macro attributes attributes are allowed to be written after `#[derive]`, it means that derive can *fully configure* items for them.
```rust
#[derive()]
#[my_attr]
struct S {
#[cfg(FALSE)] // this field in removed by `#[derive()]` and not observed by `#[my_attr]`
field: u8
}
```
- `#[derive]` on some non-item targets is now prohibited. This was accidentally allowed as noop in the past, but was warned about since early 2018 (#50092), despite that crater found a few such cases in unmaintained crates.
- Derive helper attributes used before their introduction are now reported with a deprecation lint. This change is long overdue (since macro modularization, https://github.com/rust-lang/rust/issues/52226#issuecomment-422605033), but it was hard to do without fixing expansion order for derives. The deprecation is tracked by #79202.
```rust
#[trait_helper] // warning: derive helper attribute is used before it is introduced
#[derive(Trait)]
struct S {}
```
Crater analysis: https://github.com/rust-lang/rust/pull/79078#issuecomment-731436821
Add a note about the correctness and the effect on unsafe code to the `ExactSizeIterator` docs
As it is a safe trait it does not provide any guarantee that the
returned length is correct and as such unsafe code must not rely on it.
That's why `TrustedLen` exists.
Fixes https://github.com/rust-lang/rust/issues/81739
Update LayoutError/LayoutErr stability attributes
`LayoutError` ended up not making it into 1.49.0, updating the stability attributes to reflect that.
I also pushed `LayoutErr` deprecation back a release to allow 2 releases before the deprecation comes into effect.
This change should be backported to beta.
Add lint for `panic!(123)` which is not accepted in Rust 2021.
This extends the `panic_fmt` lint to warn for all cases where the first argument cannot be interpreted as a format string, as will happen in Rust 2021.
It suggests to add `"{}",` to format the message as a string. In the case of `std::panic!()`, it also suggests the recently stabilized
`std::panic::panic_any()` function as an alternative.
It renames the lint to `non_fmt_panic` to match the lint naming guidelines.
![image](https://user-images.githubusercontent.com/783247/106520928-675ea680-64d5-11eb-81f7-d8fa48b93a0b.png)
This is part of #80162.
r? ```@estebank```
As it is a safe trait it does not provide any guarantee that the
returned length is correct and as such unsafe code must not rely on it.
That's why `TrustedLen` exists.
Fixes https://github.com/rust-lang/rust/issues/81739
Otherwise if `Iterator::self.a.__iterator_get_unchecked` panics the
index would not have been incremented yet and another call to
`Iterator::next` would read from the same index again, which is not
allowed according to the API contract of `TrustedRandomAccess` for
`!Clone`.
Fixes https://github.com/rust-lang/rust/issues/81740