Partially stabilize const_slice_from_raw_parts
This doesn't stabilize methods working on mutable pointers.
This pull request continues from #94946.
Pinging `@rust-lang/wg-const-eval` this because I use `rustc_allow_const_fn_unstable`. I believe this is justifiable as it's already possible to use `slice::from_raw_parts` in stable by abusing `transmute`. The stable alternative to this would be to provide a stable const implementation of `std::ptr::from_raw_parts` (as it can already be implemented in stable).
```rust
use std::mem;
#[repr(C)]
struct Slice<T> {
data: *const T,
len: usize,
}
fn main() {
let data: *const i32 = [1, 2, 3, 4].as_ptr();
let len = 4;
println!("{:?}", unsafe {
mem::transmute::<Slice<i32>, &[i32]>(Slice { data, len })
});
}
```
`@rustbot` modify labels: +T-libs-api
don't use `commit_if_ok` during `higher_ranked_sub`
This snapshot doesn't really do anything useful for us, especially once we deal with placeholder outlive bounds during trait solving.
I guess that currently the idea is that `higher_ranked_sub` could cause a later `leak_check` to fail even if the combine operation isn't actually relevant. But really, using combine outside of snapshot and ignoring its result is wrong anyways, as it can constrain inference variables.
r? rust-lang/types
don't allow ZST in ScalarInt
There are several indications that we should not ZST as a ScalarInt:
- We had two ways to have ZST valtrees, either an empty `Branch` or a `Leaf` with a ZST in it.
`ValTree::zst()` used the former, but the latter could possibly arise as well.
- Likewise, the interpreter had `Immediate::Uninit` and `Immediate::Scalar(Scalar::ZST)`.
- LLVM codegen already had to special-case ZST ScalarInt.
So I propose we stop using ScalarInt to represent ZST (which are clearly not integers). Instead, we can add new ZST variants to those types that did not have other variants which could be used for this purpose.
Based on https://github.com/rust-lang/rust/pull/98831. Only the commits starting from "don't allow ZST in ScalarInt" are new.
r? `@oli-obk`
There are several indications that we should not ZST as a ScalarInt:
- We had two ways to have ZST valtrees, either an empty `Branch` or a `Leaf` with a ZST in it.
`ValTree::zst()` used the former, but the latter could possibly arise as well.
- Likewise, the interpreter had `Immediate::Uninit` and `Immediate::Scalar(Scalar::ZST)`.
- LLVM codegen already had to special-case ZST ScalarInt.
So instead add new ZST variants to those types that did not have other variants
which could be used for this purpose.
Clarify MIR semantics of storage statements
Seems worthwhile to start closing out some of the less controversial open questions about MIR semantics. Hopefully this is fairly non-controversial - it's what we implement already, and I see no reason to do anything more restrictive. cc ``@tmiasko`` who commented on this when it was discussed in the original PR that added these docs.
Fix several issues during cross compiling
- When cross compiling LLVM on an arm64 macOS machine to x86_64, CMake will produce universal binaries by default, causing link errors. Explicitly set `CMAKE_OSX_ARCHITECTURES` to the one single target architecture so that the executables and libraries will be single architecture.
- When cross compiling rustc with `llvm.clang = true`, `CLANG_TABLEGEN` has to be set to the host `clang-tblgen` executable to build clang.
Implement support for DWARF version 5.
DWARF version 5 brings a number of improvements over version 4. Quoting from
the announcement [1]:
> Version 5 incorporates improvements in many areas: better data compression,
> separation of debugging data from executable files, improved description of
> macros and source files, faster searching for symbols, improved debugging
> optimized code, as well as numerous improvements in functionality and
> performance.
On platforms where DWARF version 5 is supported (Linux, primarily), this commit
adds support for it behind a new `-Z dwarf-version=5` flag.
[1]: https://dwarfstd.org/Public_Review.php
r? ``@michaelwoerister``
Miscellaneous inlining improvements
Add `#[inline]` to a few trivial non-generic methods from a perf report
that otherwise wouldn't be candidates for inlining.
Before, there was more or less duplicated suggestions to add type hints.
Fix by clearing more generic suggestions when a more specific suggestion
is possible.
This fixes#93506 .
Track implicit `Sized` obligations in type params
When we evaluate `ty::GenericPredicates` we introduce the implicit
`Sized` predicate of type params, but we do so with only the `Predicate`
its `Span` as context, we don't have an `Obligation` or
`ObligationCauseCode` we could influence. To try and carry this
information through, we add a new field to `ty::GenericPredicates` that
tracks both which predicates come from a type param and whether that
param has any bounds already (to use in suggestions).
We also suggest adding a `?Sized` bound if appropriate on E0599.
Address part of #98539.
`cs_fold` has four distinct cases, covered by three different function
arguments:
- first field
- combine current field with previous results
- no fields
- non-matching enum variants
This commit clarifies things by replacing the three function arguments
with one that takes a new `CsFold` type with four slightly different)
cases
- single field
- combine result for current field with results for previous fields
- no fields
- non-matching enum variants
This makes the code shorter and clearer.
When deriving functions for zero-variant enums, we just generated a
function body that calls `std::instrincs::unreachable`. There is a large
comment with some not-very-useful historical discussion about
alternatives, including some discussion of feature-gating zero-variant
enums, which is clearly irrelevant today.
This commit cuts the comment down greatly.
The deriving code has some complex parts involving iterations over
selflike args and also fields within structs and enum variants.
The return types for a few functions demonstrate this:
- `TraitDef::create_{struct_pattern,enum_variant_pattern}` returns a
`(P<ast::Pat>, Vec<(Span, Option<Ident>, P<Expr>)>)`
- `TraitDef::create_struct_field_accesses` returns a `Vec<(Span,
Option<Ident>, P<Expr>)>`.
This results in per-field data stored within per-selflike-arg data, with
lots of repetition within the per-field data elements. This then has to
be "transposed" in two places (`expand_struct_method_body` and
`expand_enum_method_body`) into per-self-like-arg data stored within
per-field data. It's all quite clumsy and confusing.
This commit rearranges things greatly. Data is obtained in the needed
form up-front, avoiding the need for transposition. Also, various
functions are split, removed, and added, to make things clearer and
avoid tuple return values.
The diff is hard to read, which reflects the messiness of the original
code -- there wasn't an easy way to break these changes into small
pieces. (Sorry!) It's a net reduction of 35 lines and a readability
improvement. The generated code is unchanged.