Do not report too many expr field candidates
When considering "this expressions' field has a {field/method}" suggestions:
1. Don't report methods that are out of scope
2. Use `span_suggestions` instead of reporting each field candidate, which caps the number of suggestions to 4
4. Blacklist some common traits like `Clone` and `Deref`
Fixes#100894
This makes it possible to instruct libstd to never touch the signal
handler for `SIGPIPE`, which makes programs pipeable by default (e.g.
with `./your-program | head -n 1`) without `ErrorKind::BrokenPipe`
errors.
Add pointer masking convenience functions
This PR adds the following public API:
```rust
impl<T: ?Sized> *const T {
fn mask(self, mask: usize) -> *const T;
}
impl<T: ?Sized> *mut T {
fn mask(self, mask: usize) -> *const T;
}
// mod intrinsics
fn mask<T>(ptr: *const T, mask: usize) -> *const T
```
This is equivalent to `ptr.map_addr(|a| a & mask)` but also uses a cool llvm intrinsic.
Proposed in https://github.com/rust-lang/rust/pull/95643#issuecomment-1121562352
cc `@Gankra` `@scottmcm` `@RalfJung`
r? rust-lang/libs-api
In the MIR pretty printing, it can sometimes happen that the span of the
statement is outside the span of the body (for example through
inlining). In this case, don't display a relative span but an absolute
span. This will make the mir-opt-tests a little more prone to diffs
again, but the impact should be small.
This commit adds the following functions all of which have a signature
`pointer, usize -> pointer`:
- `<*mut T>::mask`
- `<*const T>::mask`
- `intrinsics::ptr_mask`
These functions are equivalent to `.map_addr(|a| a & mask)` but they
utilize `llvm.ptrmask` llvm intrinsic.
*masks your pointers*
Add the diagnostic translation lints to crates that don't emit them
Some of these have a note saying that they should build on a stable compiler, does that mean they shouldn't get these lints? Or can we cfg them out on those?
Lazily decode SourceFile from metadata
Currently, source files from foreign crates are decoded up-front from metadata.
Spans from those crates were matched with the corresponding source using binary search among those files.
This PR changes the strategy by matching spans to files during encoding. This allows to decode source files on-demand, instead of up-front. The on-disk format for spans becomes: `<tag> <position from start of file> <length> <file index> <crate (if foreign file)>`.
rustc_metadata: dedupe strings to prevent multiple copies in rmeta/query cache blow file size
r? `@cjgillot`
Encodes strings in rmeta/query cache so duplicated ones will be encoded as offsets to first strings, reducing file size.
Implement `#[rustc_default_body_unstable]`
This PR implements a new stability attribute — `#[rustc_default_body_unstable]`.
`#[rustc_default_body_unstable]` controls the stability of default bodies in traits.
For example:
```rust
pub trait Trait {
#[rustc_default_body_unstable(feature = "feat", isssue = "none")]
fn item() {}
}
```
In order to implement `Trait` user needs to either
- implement `item` (even though it has a default implementation)
- enable `#![feature(feat)]`
This is useful in conjunction with [`#[rustc_must_implement_one_of]`](https://github.com/rust-lang/rust/pull/92164), we may want to relax requirements for a trait, for example allowing implementing either of `PartialEq::{eq, ne}`, but do so in a safe way — making implementation of only `PartialEq::ne` unstable.
r? `@Aaron1011`
cc `@nrc` (iirc you were interested in this wrt `read_buf`), `@danielhenrymantilla` (you were interested in the related `#[rustc_must_implement_one_of]`)
P.S. This is my first time working with stability attributes, so I'm not sure if I did everything right 😅
This initial implementation handles transmutations between types with specified layouts, except when references are involved.
Co-authored-by: Igor null <m1el.2027@gmail.com>
Some command-line options accessible through `sess.opts` are best
accessed through wrapper functions on `Session`, `TyCtxt` or otherwise,
rather than through field access on the option struct in the `Session`.
Adds a new lint which triggers on those options that should be accessed
through a wrapper function so that this is prohibited. Options are
annotated with a new attribute `rustc_lint_opt_deny_field_access` which
can specify the error message (i.e. "use this other function instead")
to be emitted.
A simpler alternative would be to simply rename the options in the
option type so that it is clear they should not be used, however this
doesn't prevent uses, just discourages them. Another alternative would
be to make the option fields private, and adding accessor functions on
the option types, however the wrapper functions sometimes rely on
additional state from `Session` or `TyCtxt` which wouldn't be available
in an function on the option type, so the accessor would simply make the
field available and its use would be discouraged too.
Signed-off-by: David Wood <david.wood@huawei.com>
codegen: use new {re,de,}allocator annotations in llvm
This obviates the patch that teaches LLVM internals about
_rust_{re,de}alloc functions by putting annotations directly in the IR
for the optimizer.
The sole test change is required to anchor FileCheck to the body of the
`box_uninitialized` method, so it doesn't see the `allocalign` on
`__rust_alloc` and get mad about the string `alloca` showing up. Since I
was there anyway, I added some checks on the attributes to prove the
right attributes got set.
r? `@nikic`
This obviates the patch that teaches LLVM internals about
_rust_{re,de}alloc functions by putting annotations directly in the IR
for the optimizer.
The sole test change is required to anchor FileCheck to the body of the
`box_uninitialized` method, so it doesn't see the `allocalign` on
`__rust_alloc` and get mad about the string `alloca` showing up. Since I
was there anyway, I added some checks on the attributes to prove the
right attributes got set.
While we're here, we also emit allocator attributes on
__rust_alloc_zeroed. This should allow LLVM to perform more
optimizations for zeroed blocks, and probably fixes#90032. [This
comment](https://github.com/rust-lang/rust/issues/24194#issuecomment-308791157)
mentions "weird UB-like behaviour with bitvec iterators in
rustc_data_structures" so we may need to back this change out if things
go wrong.
The new test cases require LLVM 15, so we copy them into LLVM
14-supporting versions, which we can delete when we drop LLVM 14.
This attribute allows to mark default body of a trait function as
unstable. This means that implementing the trait without implementing
the function will require enabling unstable feature.
This is useful in conjunction with `#[rustc_must_implement_one_of]`,
we may want to relax requirements for a trait, for example allowing
implementing either of `PartialEq::{eq, ne}`, but do so in a safe way
-- making implementation of only `PartialEq::ne` unstable.
rmeta: avoid embedding `StabilityLevel::Unstable` reason multiple times into .rmeta\.rlib files
Avoids bloating size of some rmeta\rlib files by not placing default string for `StabilityLevel::Unstable` reason multiple times, affects only stdlib\rustc artifacts. For stdlib cuts about 3% (diff of total size for patched\unpatched *.rmeta files of stage1-std) of file size, depending on crates.
fixes#88180
Add support for LLVM ShadowCallStack.
LLVMs ShadowCallStack provides backward edge control flow integrity protection by using a separate shadow stack to store and retrieve a function's return address.
LLVM currently only supports this for AArch64 targets. The x18 register is used to hold the pointer to the shadow stack, and therefore this only works on ABIs which reserve x18. Further details are available in the [LLVM ShadowCallStack](https://clang.llvm.org/docs/ShadowCallStack.html) docs.
# Usage
`-Zsanitizer=shadow-call-stack`
# Comments/Caveats
* Currently only enabled for the aarch64-linux-android target
* Requires the platform to define a runtime to initialize the shadow stack, see the [LLVM docs](https://clang.llvm.org/docs/ShadowCallStack.html) for more detail.
make vtable pointers entirely opaque
This implements the scheme discussed in https://github.com/rust-lang/unsafe-code-guidelines/issues/338: vtable pointers should be considered entirely opaque and not even readable by Rust code, similar to function pointers.
- We have a new kind of `GlobalAlloc` that symbolically refers to a vtable.
- Miri uses that kind of allocation when generating a vtable.
- The codegen backends, upon encountering such an allocation, call `vtable_allocation` to obtain an actually dataful allocation for this vtable.
- We need new intrinsics to obtain the size and align from a vtable (for some `ptr::metadata` APIs), since direct accesses are UB now.
I had to touch quite a bit of code that I am not very familiar with, so some of this might not make much sense...
r? `@oli-obk`