Fix rustc_parse_format precision & width spans
When a `precision`/`width` was `CountIsName - {:name$}` or `CountIs - {:10}` the `precision_span`/`width_span` was set to `None`
For `width` the name span in `CountIsName(_, name_span)` had its `.start` off by one
r? ``@fee1-dead`` / cc ``@PrestonFrom`` since this is similar to #99987
Migrate rustc_ast_passes diagnostics to `SessionDiagnostic` and translatable messages (first part)
Doing a full migration of the `rustc_ast_passes` crate.
Making a draft here since there's not yet a tracking issue for the migrations going on.
`@rustbot` label +A-translation
In some places we use `Vec<Attribute>` and some places we use
`ThinVec<Attribute>` (a.k.a. `AttrVec`). This results in various points
where we have to convert between `Vec` and `ThinVec`.
This commit changes the places that use `Vec<Attribute>` to use
`AttrVec`. A lot of this is mechanical and boring, but there are
some interesting parts:
- It adds a few new methods to `ThinVec`.
- It implements `MapInPlace` for `ThinVec`, and introduces a macro to
avoid the repetition of this trait for `Vec`, `SmallVec`, and
`ThinVec`.
Overall, it makes the code a little nicer, and has little effect on
performance. But it is a precursor to removing
`rustc_data_structures::thin_vec::ThinVec` and replacing it with
`thin_vec::ThinVec`, which is implemented more efficiently.
Don't derive `PartialEq::ne`.
Currently we skip deriving `PartialEq::ne` for C-like (fieldless) enums
and empty structs, thus reyling on the default `ne`. This behaviour is
unnecessarily conservative, because the `PartialEq` docs say this:
> Implementations must ensure that eq and ne are consistent with each other:
>
> `a != b` if and only if `!(a == b)` (ensured by the default
> implementation).
This means that the default implementation (`!(a == b)`) is always good
enough. So this commit changes things such that `ne` is never derived.
The motivation for this change is that not deriving `ne` reduces compile
times and binary sizes.
Observable behaviour may change if a user has defined a type `A` with an
inconsistent `PartialEq` and then defines a type `B` that contains an
`A` and also derives `PartialEq`. Such code is already buggy and
preserving bug-for-bug compatibility isn't necessary.
Two side-effects of the change:
- There is only one error message produced for types where `PartialEq`
cannot be derived, instead of two.
- For coverage reports, some warnings about generated `ne` methods not
being executed have disappeared.
Both side-effects seem fine, and possibly preferable.
- Rename `ast::Lit::token` as `ast::Lit::token_lit`, because its type is
`token::Lit`, which is not a token. (This has been confusing me for a
long time.)
reasonable because we have an `ast::token::Lit` inside an `ast::Lit`.
- Rename `LitKind::{from,to}_lit_token` as
`LitKind::{from,to}_token_lit`, to match the above change and
`token::Lit`.
Simplify format_args builtin macro implementation.
Instead of a FxHashMap<Symbol, (usize, Span)> for the named arguments, this now includes the name and span in the elements of the Vec<FormatArg> directly. The FxHashMap still exists to look up the index, but no longer contains the span. Looking up the name or span of an argument is now trivial and does not need the map anymore.
Instead of a FxHashMap<Symbol, (usize, Span)> for the named arguments,
this now includes the name and span in the elements of the
Vec<FormatArg> directly. The FxHashMap still exists to look up the
index, but no longer contains the span. Looking up the name or span of
an argument is now trivial and does not need the map anymore.
Improve position named arguments lint underline and formatting names
For named arguments used as implicit position arguments, underline both
the opening curly brace and either:
* if there is formatting, the next character (which will either be the
closing curl brace or the `:` denoting the start of formatting args)
* if there is no formatting, the entire arg span (important if there is
whitespace like `{ }`)
This should make it more obvious where the named argument should be.
Additionally, in the lint message, emit the formatting argument names
without a dollar sign to avoid potentially confusion.
Fixes#99907
Properly reject the `may_unwind` option in `global_asm!`
This was accidentally accepted even though it had no effect in
`global_asm!`. The option only makes sense for `asm!` which runs within
a function.
For named arguments used as implicit position arguments, underline both
the opening curly brace and either:
* if there is formatting, the next character (which will either be the
closing curl brace or the `:` denoting the start of formatting args)
* if there is no formatting, the entire arg span (important if there is
whitespace like `{ }`)
This should make it more obvious where the named argument should be.
Additionally, in the lint message, emit the formatting argument names
without a dollar sign to avoid potentially confusion.
Fixes#99907
Currently we skip deriving `PartialEq::ne` for C-like (fieldless) enums
and empty structs, thus reyling on the default `ne`. This behaviour is
unnecessarily conservative, because the `PartialEq` docs say this:
> Implementations must ensure that eq and ne are consistent with each other:
>
> `a != b` if and only if `!(a == b)` (ensured by the default
> implementation).
This means that the default implementation (`!(a == b)`) is always good
enough. So this commit changes things such that `ne` is never derived.
The motivation for this change is that not deriving `ne` reduces compile
times and binary sizes.
Observable behaviour may change if a user has defined a type `A` with an
inconsistent `PartialEq` and then defines a type `B` that contains an
`A` and also derives `PartialEq`. Such code is already buggy and
preserving bug-for-bug compatibility isn't necessary.
Two side-effects of the change:
- There is only one error message produced for types where `PartialEq`
cannot be derived, instead of two.
- For coverage reports, some warnings about generated `ne` methods not
being executed have disappeared.
Both side-effects seem fine, and possibly preferable.
Remove `TreeAndSpacing`.
A `TokenStream` contains a `Lrc<Vec<(TokenTree, Spacing)>>`. But this is
not quite right. `Spacing` makes sense for `TokenTree::Token`, but does
not make sense for `TokenTree::Delimited`, because a
`TokenTree::Delimited` cannot be joined with another `TokenTree`.
This commit fixes this problem, by adding `Spacing` to `TokenTree::Token`,
changing `TokenStream` to contain a `Lrc<Vec<TokenTree>>`, and removing the
`TreeAndSpacing` typedef.
The commit removes these two impls:
- `impl From<TokenTree> for TokenStream`
- `impl From<TokenTree> for TreeAndSpacing`
These were useful, but also resulted in code with many `.into()` calls
that was hard to read, particularly for anyone not highly familiar with
the relevant types. This commit makes some other changes to compensate:
- `TokenTree::token()` becomes `TokenTree::token_{alone,joint}()`.
- `TokenStream::token_{alone,joint}()` are added.
- `TokenStream::delimited` is added.
This results in things like this:
```rust
TokenTree::token(token::Semi, stmt.span).into()
```
changing to this:
```rust
TokenStream::token_alone(token::Semi, stmt.span)
```
This makes the type of the result, and its spacing, clearer.
These changes also simplifies `Cursor` and `CursorRef`, because they no longer
need to distinguish between `next` and `next_with_spacing`.
r? `@petrochenkov`
A `TokenStream` contains a `Lrc<Vec<(TokenTree, Spacing)>>`. But this is
not quite right. `Spacing` makes sense for `TokenTree::Token`, but does
not make sense for `TokenTree::Delimited`, because a
`TokenTree::Delimited` cannot be joined with another `TokenTree`.
This commit fixes this problem, by adding `Spacing` to `TokenTree::Token`,
changing `TokenStream` to contain a `Lrc<Vec<TokenTree>>`, and removing the
`TreeAndSpacing` typedef.
The commit removes these two impls:
- `impl From<TokenTree> for TokenStream`
- `impl From<TokenTree> for TreeAndSpacing`
These were useful, but also resulted in code with many `.into()` calls
that was hard to read, particularly for anyone not highly familiar with
the relevant types. This commit makes some other changes to compensate:
- `TokenTree::token()` becomes `TokenTree::token_{alone,joint}()`.
- `TokenStream::token_{alone,joint}()` are added.
- `TokenStream::delimited` is added.
This results in things like this:
```rust
TokenTree::token(token::Semi, stmt.span).into()
```
changing to this:
```rust
TokenStream::token_alone(token::Semi, stmt.span)
```
This makes the type of the result, and its spacing, clearer.
These changes also simplifies `Cursor` and `CursorRef`, because they no longer
need to distinguish between `next` and `next_with_spacing`.
Address issue #99265 by checking each positionally used argument
to see if the argument is named and adding a lint to use the name
instead. This way, when named arguments are used positionally in a
different order than their argument order, the suggested lint is
correct.
For example:
```
println!("{b} {}", a=1, b=2);
```
This will now generate the suggestion:
```
println!("{b} {a}", a=1, b=2);
```
Additionally, this check now also correctly replaces or inserts
only where the positional argument is (or would be if implicit).
Also, width and precision are replaced with their argument names
when they exists.
Since the issues were so closely related, this fix for issue #99265
also fixes issue #99266.
Fixes#99265Fixes#99266
Diagnostic width span is not added when '0$' is used as width in format strings
When the following code is run rustc does not add diagnostic spans for the width argument. Such spans are necessary for a clippy lint that I am currently writing.
```rust
println!("Hello {1:0$}!", 5, "x");
// ^^
// Should have a span here
```
Currently `#![forbid(unused_qualifications)]` is incompatible with all
derive's because we add `#[allow(unused_qualifications)]` in all
generated impl's.