A match in callee.rs was recognizing some foreign fns as named tuple constructors. A reproducible test case for this is nearly impossible since it depends on the way NodeIds happen to be assigned in different crates.
Fixes#15913
Adjust the handling of `#[inline]` items so that they get translated into every
compilation unit that uses them. This is necessary to preserve the semantics
of `#[inline(always)]`.
Crate-local `#[inline]` functions and statics are blindly translated into every
compilation unit. Cross-crate inlined items and monomorphizations of
`#[inline]` functions are translated the first time a reference is seen in each
compilation unit. When using multiple compilation units, inlined items are
given `available_externally` linkage whenever possible to avoid duplicating
object code.
Add a post-processing pass to `trans` that converts symbols from external to
internal when possible. Translation with multiple compilation units initially
makes most symbols external, since it is not clear when translating a
definition whether that symbol will need to be accessed from another
compilation unit. This final pass internalizes symbols that are not reachable
from other crates and not referenced from other compilation units, so that LLVM
can perform more aggressive optimizations on those symbols.
Use a shared lookup table of previously-translated monomorphizations/glue
functions to avoid translating those functions in every compilation unit where
they're used. Instead, the function will be translated in whichever
compilation unit uses it first, and the remaining compilation units will link
against that original definition.
Rotate between compilation units while translating. The "worker threads"
commit added support for multiple compilation units, but only translated into
one, leaving the rest empty. With this commit, `trans` rotates between various
compilation units while translating, using a simple stragtegy: upon entering a
module, switch to translating into whichever compilation unit currently
contains the fewest LLVM instructions.
Most of the actual changes here involve getting symbol linkage right, so that
items translated into different compilation units will link together properly
at the end.
When inlining an item from another crate, use the original symbol from that
crate's metadata instead of generating a new symbol using the `ast::NodeId` of
the inlined copy. This requires exporting symbols in the crate metadata in a
few additional cases. Having predictable symbols for inlined items will be
useful later to avoid generating duplicate object code for inlined items.
Refactor the code in `llvm::back` that invokes LLVM optimization and codegen
passes so that it can be called from worker threads. (Previously, it used
`&Session` extensively, and `Session` is not `Share`.) The new code can handle
multiple compilation units, by compiling each unit to `crate.0.o`, `crate.1.o`,
etc., and linking together all the `crate.N.o` files into a single `crate.o`
using `ld -r`. The later linking steps can then be run unchanged.
The new code preserves the behavior of `--emit`/`-o` when building a single
compilation unit. With multiple compilation units, the `--emit=asm/ir/bc`
options produce multiple files, so combinations like `--emit=ir -o foo.ll` will
not actually produce `foo.ll` (they instead produce several `foo.N.ll` files).
The new code supports `-Z lto` only when using a single compilation unit.
Compiling with multiple compilation units and `-Z lto` will produce an error.
(I can't think of any good reason to do such a thing.) Linking with `-Z lto`
against a library that was built as multiple compilation units will also fail,
because the rlib does not contain a `crate.bytecode.deflate` file. This could
be supported in the future by linking together the `crate.N.bc` files produced
when compiling the library into a single `crate.bc`, or by making the LTO code
support multiple `crate.N.bytecode.deflate` files.
Break up `CrateContext` into `SharedCrateContext` and `LocalCrateContext`. The
local piece corresponds to a single compilation unit, and contains all
LLVM-related components. (LLVM data structures are tied to a specific
`LLVMContext`, and we will need separate `LLVMContext`s to safely run
multithreaded optimization.) The shared piece contains data structures that
need to be shared across all compilation units, such as the `ty::ctxt` and some
tables related to crate metadata.
They were only correct in the simplest case. Some of the optimisations
are certainly possible but should be introduced carefully and only
when the whole pattern codegen infrastructure is in a better shape.
Fixes#16648.
closes#16800
r? @nikomatsakis - I'm not 100% sure this is the right approach, it is kind of ad-hoc. The trouble is we don't have any intrinsic notion of which types are sized and which are not, we only have the Sized bound, so I have nothing to validate the Sized bound against.
For example `let _x: &Trait = &*(box Foo as Box<Trait>);`. There was a bug where no cleanup would be scheduled by the deref.
No test because cleanup-auto-borrow-obj.rs is a test for this once we remove trait cross-borrowing (done on another branch).
Not sure if this is addressing the root cause or just patching up a symptom. Also not sure if I should be adding a diagnostic code for this.
Fixes#16750Fixes#15812
They were only correct in the simplest case. Some of the optimisations
are certainly possible but should be introduced carefully and only
when the whole pattern codegen infrastructure is in a better shape.
Fixes#16648.
Different Identifiers and Names can have identical textual representations, but different internal representations, due to the macro hygiene machinery (syntax contexts and gensyms). This provides a way to see these internals by compiling with `--pretty expanded,hygiene`.
This is useful for debugging & hacking on macros (e.g. diagnosing https://github.com/rust-lang/rust/issues/15750/https://github.com/rust-lang/rust/issues/15962 likely would've been faster with this functionality).
E.g.
```rust
#![feature(macro_rules)]
// minimal junk
#![no_std]
macro_rules! foo {
($x: ident) => { y + $x }
}
fn bar() {
foo!(x)
}
```
```rust
#![feature(macro_rules)]
// minimal junk
#![no_std]
fn bar /* 61#0 */() { y /* 60#2 */ + x /* 58#3 */ }
```
Fixes#12643
> Say!
> I like labelled breaks/continues!
I will use them with a `for` loop.
And I will use with a `loop` loop.
Say! I will use them ANYWHERE!
… _even_ in a `while` loop.
Because they're now supported there.
`--pretty expanded,hygiene` is helpful with debugging macro issues,
since two identifiers/names can be textually the same, but different
internally (resulting in weird "undefined variable" errors).
This adds support for lint groups to the compiler. Lint groups are a way of
grouping a number of lints together under one name. For example, this also
defines a default lint for naming conventions, named `bad_style`. Writing
`#[allow(bad_style)]` is equivalent to writing
`#[allow(non_camel_case_types, non_snake_case, non_uppercase_statics)]`. These
lint groups can also be defined as a compiler plugin using the new
`Registry::register_lint_group` method.
This also adds two built-in lint groups, `bad_style` and `unused`. The contents
of these groups can be seen by running `rustc -W help`.
This unifies the `non_snake_case_functions` and `uppercase_variables` lints
into one lint, `non_snake_case`. It also now checks for non-snake-case modules.
This also extends the non-camel-case types lint to check type parameters, and
merges the `non_uppercase_pattern_statics` lint into the
`non_uppercase_statics` lint.
Because the `uppercase_variables` lint is now part of the `non_snake_case`
lint, all non-snake-case variables that start with lowercase characters (such
as `fooBar`) will now trigger the `non_snake_case` lint.
New code should be updated to use the new `non_snake_case` lint instead of the
previous `non_snake_case_functions` and `uppercase_variables` lints. All use of
the `non_uppercase_pattern_statics` should be replaced with the
`non_uppercase_statics` lint. Any code that previously contained non-snake-case
module or variable names should be updated to use snake case names or disable
the `non_snake_case` lint. Any code with non-camel-case type parameters should
be changed to use camel case or disable the `non_camel_case_types` lint.
[breaking-change]
The inference scheme proposed in <http://smallcultfollowing.com/babysteps/blog/2014/07/09/an-experimental-new-type-inference-scheme-for-rust/>.
This is theoretically a [breaking-change]. It is possible that you may encounter type checking errors, particularly related to closures or functions with higher-ranked lifetimes or object types. Adding more explicit type annotations should help the problem. However, I have not been able to make an example that *actually* successfully compiles with the older scheme and fails with the newer scheme.
f? @pcwalton, @pnkfelix
This squashes the
> `for` loop expression has type `[type error]` which does not implement
> the `Iterator` trait
message that one received when writing `for ... in x` where was
previously found to have a type error.
Fixes#16042.
Per API meeting
https://github.com/rust-lang/meeting-minutes/blob/master/Meeting-API-review-2014-08-13.md
# Changes to `core::option`
Most of the module is marked as stable or unstable; most of the unstable items are awaiting resolution of conventions issues.
However, a few methods have been deprecated, either due to lack of use or redundancy:
* `take_unwrap`, `get_ref` and `get_mut_ref` (redundant, and we prefer for this functionality to go through an explicit .unwrap)
* `filtered` and `while`
* `mutate` and `mutate_or_set`
* `collect`: this functionality is being moved to a new `FromIterator` impl.
# Changes to `core::result`
Most of the module is marked as stable or unstable; most of the unstable items are awaiting resolution of conventions issues.
* `collect`: this functionality is being moved to a new `FromIterator` impl.
* `fold_` is deprecated due to lack of use
* Several methods found in `core::option` are added here, including `iter`, `as_slice`, and variants.
Due to deprecations, this is a:
[breaking-change]
DST coercions and DST fields in structs
The commits are not quite stand alone, I should probably squash them together before landing. In particular if you review the individual commits, then you'll see some scrappy stuff that gets fixed in later commits. But reading the commits in order might be easier to get an overall idea of what is going on.
The first commit includes putting back time zone into our time library - @pcwalton removed that as part of his de-~str'ing, but I had already converted it to use StrBuf, so we may as well leave it in. Update: no longer, this is removed in a later commit.
[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
As of RFC 18, struct layout is undefined. Opting into a C-compatible struct
layout is now down with #[repr(C)]. For consistency, specifying a packed
layout is now also down with #[repr(packed)]. Both can be specified.
To fix errors caused by this, just add #[repr(C)] to the structs, and change
#[packed] to #[repr(packed)]
Closes#14309
[breaking-change]
It's unfortunate that the read+write operands need special treatment in the AST. A separate vec for all expressions is an alternative, but it doesn't play nicely with trans.
Fixes#14936
Stop read+write expressions from expanding into two occurences
in the AST. Add a bool to indicate whether an operand in output
position if read+write or not.
Fixes#14936
declared with the same name in the same scope.
This breaks several common patterns. First are unused imports:
use foo::bar;
use baz::bar;
Change this code to the following:
use baz::bar;
Second, this patch breaks globs that import names that are shadowed by
subsequent imports. For example:
use foo::*; // including `bar`
use baz::bar;
Change this code to remove the glob:
use foo::{boo, quux};
use baz::bar;
Or qualify all uses of `bar`:
use foo::{boo, quux};
use baz;
... baz::bar ...
Finally, this patch breaks code that, at top level, explicitly imports
`std` and doesn't disable the prelude.
extern crate std;
Because the prelude imports `std` implicitly, there is no need to
explicitly import it; just remove such directives.
The old behavior can be opted into via the `import_shadowing` feature
gate. Use of this feature gate is discouraged.
This implements RFC #116.
Closes#16464.
[breaking-change]
These are already marked as `noalias` due to the immutability guarantee
(see 4c2d4cd3de), but more information can
be bubbled up to the caller via `readonly`.
When a struct implements Drop, its fields should still drop in
declaration order (just as they do when the struct does not implement
Drop).
Fixes#16492.
When a struct implements Drop, its fields should still drop in
declaration order (just as they do when the struct does not implement
Drop).
Fixes#16492.
The discriminant for Option values is either 0 or 1, so we can just
truncate the value to an i1, which ends up as a no-op for Options
containing pointers.
These are already marked as `noalias` due to the immutability guarantee
(see 4c2d4cd3de), but more information can
be bubbled up to the caller via `readonly`.
The discriminant for Option values is either 0 or 1, so we can just
truncate the value to an i1, which ends up as a no-op for Options
containing pointers.
These `where` clauses are accepted everywhere generics are currently
accepted and desugar during type collection to the type parameter bounds
we have today.
A new keyword, `where`, has been added. Therefore, this is a breaking
change. Change uses of `where` to other identifiers.
[breaking-change]
r? @nikomatsakis (or whoever)
These `where` clauses are accepted everywhere generics are currently
accepted and desugar during type collection to the type parameter bounds
we have today.
A new keyword, `where`, has been added. Therefore, this is a breaking
change. Change uses of `where` to other identifiers.
[breaking-change]
methods.
This paves the way to associated items by introducing an extra level of
abstraction ("impl-or-trait item") between traits/implementations and
methods. This new abstraction is encoded in the metadata and used
throughout the compiler where appropriate.
There are no functional changes; this is purely a refactoring.
This patch primarily does two things: (1) it prevents lifetimes from
leaking out of unboxed closures; (2) it allows unboxed closure type
notation, call notation, and construction notation to construct closures
matching any of the three traits.
This breaks code that looked like:
let mut f;
{
let x = &5i;
f = |&mut:| *x + 10;
}
Change this code to avoid having a reference escape. For example:
{
let x = &5i;
let mut f; // <-- move here to avoid dangling reference
f = |&mut:| *x + 10;
}
I believe this is enough to consider unboxed closures essentially
implemented. Further issues (for example, higher-rank lifetimes) should
be filed as followups.
Closes#14449.
[breaking-change]
r? @pnkfelix
This patch primarily does two things: (1) it prevents lifetimes from
leaking out of unboxed closures; (2) it allows unboxed closure type
notation, call notation, and construction notation to construct closures
matching any of the three traits.
This breaks code that looked like:
let mut f;
{
let x = &5i;
f = |&mut:| *x + 10;
}
Change this code to avoid having a reference escape. For example:
{
let x = &5i;
let mut f; // <-- move here to avoid dangling reference
f = |&mut:| *x + 10;
}
I believe this is enough to consider unboxed closures essentially
implemented. Further issues (for example, higher-rank lifetimes) should
be filed as followups.
Closes#14449.
[breaking-change]
by-reference upvars.
This partially implements RFC 38. A snapshot will be needed to turn this
on, because stage0 cannot yet parse the keyword.
Part of #12381.
This fixes borrow checking for closures. Code like this will break:
struct Foo {
x: int,
}
pub fn main() {
let mut this = &mut Foo {
x: 1,
};
let r = || {
let p = &this.x;
&mut this.x;
};
r()
}
Change this code to not take multiple mutable references to the same value. For
example:
struct Foo {
x: int,
}
pub fn main() {
let mut this = &mut Foo {
x: 1,
};
let r = || {
&mut this.x;
};
r()
}
Closes#16361.
[breaking-change]
r? @nikomatsakis
`for` loop heads.
This breaks code like:
let x = Some(box 1i);
for &a in x.iter() {
}
Change this code to obey the borrow checking rules. For example:
let x = Some(box 1i);
for &ref a in x.iter() {
}
Closes#16205.
[breaking-change]
r? @nikomatsakis
`for` loop heads.
This breaks code like:
let x = Some(box 1i);
for &a in x.iter() {
}
Change this code to obey the borrow checking rules. For example:
let x = Some(box 1i);
for &ref a in x.iter() {
}
Closes#16205.
[breaking-change]
This fixes borrow checking for closures. Code like this will break:
struct Foo {
x: int,
}
pub fn main() {
let mut this = &mut Foo {
x: 1,
};
let r = || {
let p = &this.x;
&mut this.x;
};
r()
}
Change this code to not take multiple mutable references to the same value. For
example:
struct Foo {
x: int,
}
pub fn main() {
let mut this = &mut Foo {
x: 1,
};
let r = || {
&mut this.x;
};
r()
}
Closes#16361.
[breaking-change]
For historical reasons, "Win32" has been used in Rust codebase to mean "Windows OS in general".
This is confusing, especially now, that Rust supports Win64 builds.
[breaking-change]
The fail macro defines some function/static items internally, which got
a dead_code warning when `fail!()` is used inside a dead function. This
is ugly and unnecessarily reveals implementation details, so the
warnings can be squashed.
Fixes#16192.
The fail macro defines some function/static items internally, which got
a dead_code warning when `fail!()` is used inside a dead function. This
is ugly and unnecessarily reveals implementation details, so the
warnings can be squashed.
Fixes#16192.
This generalises the behaviour with struct fields (which recieve no
dead_code warning if they have a leading _), and other similar lints, to
all items, e.g. `fn _foo() {} fn main() {}` has no warnings.
This leaves the `Share` trait at `std::kinds` via a `#[deprecated]` `pub use`
statement, but the `NoShare` struct is no longer part of `std::kinds::marker`
due to #12660 (the build cannot bootstrap otherwise).
All code referencing the `Share` trait should now reference the `Sync` trait,
and all code referencing the `NoShare` type should now reference the `NoSync`
type. The functionality and meaning of this trait have not changed, only the
naming.
Closes#16281
[breaking-change]
This leaves the `Share` trait at `std::kinds` via a `#[deprecated]` `pub use`
statement, but the `NoShare` struct is no longer part of `std::kinds::marker`
due to #12660 (the build cannot bootstrap otherwise).
All code referencing the `Share` trait should now reference the `Sync` trait,
and all code referencing the `NoShare` type should now reference the `NoSync`
type. The functionality and meaning of this trait have not changed, only the
naming.
Closes#16281
[breaking-change]
meaning `'b outlives 'a`. Syntax currently does nothing but is needed for full
fix to #5763. To use this syntax, the issue_5763_bootstrap feature guard is
required.
Generic extern functions written in Rust have their names mangled, as well as their internal clownshoe __rust_abi functions. This allows e.g. specific monomorphizations of these functions to be used as callbacks.
Closes#12502.
The `type_overflow` lint, doesn't catch the overflow for `i64` because
the overflow happens earlier in the parse phase when the `u64` as biggest
possible int gets casted to `i64` , without checking the for overflows.
We can't lint in the parse phase, so a refactoring of the `LitInt` type
was necessary.
The types `LitInt`, `LitUint` and `LitIntUnsuffixed` where merged to one
type `LitInt` which stores it's value as `u64`. An additional parameter was
added which indicate the signedness of the type and the sign of the value.
Using the Show impl for Names created global symbols with names like
`"str\"str\"(1027)"`. This adjusts strings, binaries and vtables to
avoid using that impl.
Fixes#15799.
This is an alternative to upgrading the way rvalues are handled in the
borrow check. Making rvalues handled more like lvalues in the borrow
check caused numerous problems related to double mutable borrows and
rvalue scopes. Rather than come up with more borrow check rules to try
to solve these problems, I decided to just forbid pattern bindings after
`@`. This affected fewer than 10 lines of code in the compiler and
libraries.
This breaks code like:
match x {
y @ z => { ... }
}
match a {
b @ Some(c) => { ... }
}
Change this code to use nested `match` or `let` expressions. For
example:
match x {
y => {
let z = y;
...
}
}
match a {
Some(c) => {
let b = Some(c);
...
}
}
Closes#14587.
[breaking-change]
When generating a unique symbol for things like closures or glue_drop,
we call token::gensym() to create a crate-unique Name. Recently, Name
changed its Show impl so it no longer prints as a number. This caused
symbols like glue_drop:1542 to become glue_drop:"glue_drop"(1542), or in
mangled form, glue_drop.$x22glue_drop$x22$LP$1542$RP$.
When generating a unique symbol for things like closures or glue_drop,
we call token::gensym() to create a crate-unique Name. Recently, Name
changed its Show impl so it no longer prints as a number. This caused
symbols like glue_drop:1542 to become glue_drop:"glue_drop"(1542), or in
mangled form, glue_drop.$x22glue_drop$x22$LP$1542$RP$.
Our implementation of ebml has diverged from the standard in order
to better serve the needs of the compiler, so it doesn't make much
sense to call what we have ebml anyore. Furthermore, our implementation
is pretty crufty, and should eventually be rewritten into a format
that better suits the needs of the compiler. This patch factors out
serialize::ebml into librbml, otherwise known as the Really Bad
Markup Language. This is a stopgap library that shouldn't be used
by end users, and will eventually be replaced by something better.
[breaking-change]
Currently, each time a function is monomorphized, all items within that function are translated. This is unnecessary work because the inner items already get translated when the function declaration is visited by `trans_item`. This patch adds a flag to the `FunctionContext` to prevent translation of items during monomorphization.
Remove the ability of the borrow checker to determine that repeated
dereferences of a Box<T> refer to the same memory object. This will
usually require one of two workarounds:
1) The interior of a Box<T> will sometimes need to be moved / borrowed
into a temporary before moving / borrowing individual derived paths.
2) A `ref x` pattern will have to be replaced with a `box ref x`
pattern.
Fixes#16094.
[breaking-change]
the CFG for match statements.
There were two bugs in issue #14684. One was simply that the borrow
check didn't know about the correct CFG for match statements: the
pattern must be a predecessor of the guard. This disallows the bad
behavior if there are bindings in the pattern. But it isn't enough to
prevent the memory safety problem, because of wildcards; thus, this
patch introduces a more restrictive rule, which disallows assignments
and mutable borrows inside guards outright.
I discussed this with Niko and we decided this was the best plan of
action.
This breaks code that performs mutable borrows in pattern guards. Most
commonly, the code looks like this:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz if self.f(...) => { ... }
_ => { ... }
}
}
}
Change this code to not use a guard. For example:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz => {
if self.f(...) {
...
} else {
...
}
}
_ => { ... }
}
}
}
Sometimes this can result in code duplication, but often it illustrates
a hidden memory safety problem.
Closes#14684.
[breaking-change]
r? @pnkfelix
Some minor changes to the compiler to expose this information. Very
inconvenient since struct fields aren't an item. Adds (yet another) table to
metadata.
Closes#15739