Changes:
- Refactor move mode computation
- Removes move mode arguments, unary move, capture clauses
(though they still parse for backwards compatibility)
- Simplify how moves are handled in trans
- Fix a number of illegal copies that cropped up
- Workaround for bug involving def-ids in params
(see details below)
Future work (I'll open bugs for these...):
- Improve error messages for moves that are due
to bindings
- Add support for moving owned content like a.b.c
to borrow check, test in trans (but I think it'll
"just work")
- Proper fix for def-ids in params
Def ids in params:
Move captures into a map instead of recomputing.
This is a workaround for a larger bug having to do with the def-ids associated
with ty_params, which are not always properly preserved when inlining. I am
not sure of my preferred fix for the larger bug yet. This current fix removes
the only code in trans that I know of which relies on ty_param def-ids, but
feels fragile.
"Dual impls" are impls that are both type implementations and trait
implementations. They can lead to ambiguity and so this patch removes them
from the language.
This also enforces coherence rules. Without this patch, records can implement
traits not defined in the current crate. This patch fixes this, and updates
all of rustc to adhere to the new enforcement. Most of this patch is fixing
rustc to obey the coherence rules, which involves converting a bunch of records
to structs.
For every call to the read() function the internal buffer was copied
into a new buffer (minus the bytes copied into the result buffer). When
the internal buffer is large enough, this severely affects performance,
especially when read_line() is used which calls read_byte() (which calls
read()) for each read byte.
For line oriented I/O this wasn't all that bad, because the internal
buffers usually never were very big. The effect is much more visible
once the buffer grows larger.
Now we always first look into the internal buffer and copy as many bytes
as possible (and desired) into the result buffer. If we need more, we
call the socket read function and use the result as the new internal
buffer, then continue to copy from the (new) internal buffer, and so on.