incr.comp.: Delete orphaned work-products.
The new partitioning scheme uncovered a hole in our incr. comp. cache directory garbage collection. So far, we relied on unneeded work products being deleted during the initial cache invalidation phase. However, we the new scheme, we get object files/work products that only contain code from upstream crates. Sometimes this code is not needed anymore (because all callers have been removed from the source) but because nothing that actually influences the contents of these work products had changed, we never deleted them from disk.
r? @nikomatsakis
Remove not(stage0) from deny(warnings)
Historically this was done to accommodate bugs in lints, but there hasn't been a
bug in a lint since this feature was added which the warnings affected. Let's
completely purge warnings from all our stages by denying warnings in all stages.
This will also assist in tracking down `stage0` code to be removed whenever
we're updating the bootstrap compiler.
Historically this was done to accommodate bugs in lints, but there hasn't been a
bug in a lint since this feature was added which the warnings affected. Let's
completely purge warnings from all our stages by denying warnings in all stages.
This will also assist in tracking down `stage0` code to be removed whenever
we're updating the bootstrap compiler.
The standard implementations of Hasher have architecture-dependent
results when hashing integers. This causes problems when the hashes are
stored within metadata - metadata written by one host architecture can't
be read by another.
To fix that, implement an architecture-independent StableHasher and use
it in all places an architecture-independent hasher is needed.
Fixes#38177.
add a `-Z incremental-dump-hash` flag
This causes us to dump a bunch of has information to stdout that can be
useful in tracking down incremental compilation invalidations,
particularly across crates.
incr.comp.: Add more output to -Z incremental-info.
Also makes sure that all output from `-Z incremental-info` is prefixed with `incremental:` for better grep-ability.
r? @nikomatsakis
This causes us to dump a bunch of has information to stdout that can be
useful in tracking down incremental compilation invalidations,
particularly across crates.
This implements RFC 1624, tracking issue #37339.
- `FnCtxt` (in typeck) gets a stack of `LoopCtxt`s, which store the
currently deduced type of that loop, the desired type, and a list of
break expressions currently seen. `loop` loops get a fresh type
variable as their initial type (this logic is stolen from that for
arrays). `while` loops get `()`.
- `break {expr}` looks up the broken loop, and unifies the type of
`expr` with the type of the loop.
- `break` with no expr unifies the loop's type with `()`.
- When building MIR, `loop` loops no longer construct a `()` value at
termination of the loop; rather, the `break` expression assigns the
result of the loop. `while` loops are unchanged.
- `break` respects contexts in which expressions may not end with braced
blocks. That is, `while break { break-value } { while-body }` is
illegal; this preserves backwards compatibility.
- The RFC did not make it clear, but I chose to make `break ()` inside
of a `while` loop illegal, just in case we wanted to do anything with
that design space in the future.
This is my first time dealing with this part of rustc so I'm sure
there's plenty of problems to pick on here ^_^
This allows you to enable *all* nested visits in a future-compatible
sort of way. Moreover, if you choose to override the `visit_nested`
methods yourself, you can "future-proof" against omissions by overriding
`nested_visit_map` to panic.
Before this PR, type names could depend on the cratenum being used
for a given crate and also on the source location of closures.
Both are undesirable for incremental compilation where we cache
LLVM IR and don't want it to depend on formatting or in which
order crates are loaded.
Replace FNV with a faster hash function.
Hash table lookups are very hot in rustc profiles and the time taken within `FnvHash` itself is a big part of that. Although FNV is a simple hash, it processes its input one byte at a time. In contrast, Firefox has a homespun hash function that is also simple but works on multiple bytes at a time. So I tried it out and the results are compelling:
```
futures-rs-test 4.326s vs 4.212s --> 1.027x faster (variance: 1.001x, 1.007x)
helloworld 0.233s vs 0.232s --> 1.004x faster (variance: 1.037x, 1.016x)
html5ever-2016- 5.397s vs 5.210s --> 1.036x faster (variance: 1.009x, 1.006x)
hyper.0.5.0 5.018s vs 4.905s --> 1.023x faster (variance: 1.007x, 1.006x)
inflate-0.1.0 4.889s vs 4.872s --> 1.004x faster (variance: 1.012x, 1.007x)
issue-32062-equ 0.347s vs 0.335s --> 1.035x faster (variance: 1.033x, 1.019x)
issue-32278-big 1.717s vs 1.622s --> 1.059x faster (variance: 1.027x, 1.028x)
jld-day15-parse 1.537s vs 1.459s --> 1.054x faster (variance: 1.005x, 1.003x)
piston-image-0. 11.863s vs 11.482s --> 1.033x faster (variance: 1.060x, 1.002x)
regex.0.1.30 2.517s vs 2.453s --> 1.026x faster (variance: 1.011x, 1.013x)
rust-encoding-0 2.080s vs 2.047s --> 1.016x faster (variance: 1.005x, 1.005x)
syntex-0.42.2 32.268s vs 31.275s --> 1.032x faster (variance: 1.014x, 1.022x)
syntex-0.42.2-i 17.629s vs 16.559s --> 1.065x faster (variance: 1.013x, 1.021x)
```
(That's a stage1 compiler doing debug builds. Results for a stage2 compiler are similar.)
The attached commit is not in a state suitable for landing because I changed the implementation of FnvHasher without changing its name (because that would have required touching many lines in the compiler). Nonetheless, it is a good place to start discussions.
Profiles show very clearly that this new hash function is a lot faster to compute than FNV. The quality of the new hash function is less clear -- it seems to do better in some cases and worse in others (judging by the number of instructions executed in `Hash{Map,Set}::get`).
CC @brson, @arthurprs
Stabilize `..` in tuple (struct) patterns
I'd like to nominate `..` in tuple and tuple struct patterns for stabilization.
This feature is a relatively small extension to existing stable functionality and doesn't have known blockers.
The feature first appeared in Rust 1.10 6 months ago.
An example of use: https://github.com/rust-lang/rust/pull/36203
Closes https://github.com/rust-lang/rust/issues/33627
r? @nikomatsakis
Reduce the number of bytes hashed by IchHasher.
IchHasher uses blake2b hashing, which is expensive, so the fewer bytes hashed
the better. There are two big ways to reduce the number of bytes hashed.
- Filenames in spans account for ~66% of all bytes (for builds with debuginfo).
The vast majority of spans have the same filename for the start of the span
and the end of the span, so hashing the filename just once in those cases is
a big win.
- u32 and u64 and usize values account for ~25%--33% of all bytes (for builds
with debuginfo). The vast majority of these are small, i.e. fit in a u8, so
shrinking them down before hashing is also a big win.
This PR implements these two optimizations. I'm certain the first one is safe.
I'm about 90% sure that the second one is safe.
Here are measurements of the number of bytes hashed when doing
debuginfo-enabled builds of stdlib and
rustc-benchmarks/syntex-0.42.2-incr-clean.
```
stdlib syntex-incr
------ -----------
original 156,781,386 255,095,596
half-SawSpan 106,744,403 176,345,419
short-ints 45,890,534 118,014,227
no-SawSpan[*] 6,831,874 45,875,714
[*] don't hash the SawSpan at all. Not part of this PR, just implemented for
comparison's sake.
```
For debug builds of syntex-0.42.2-incr-clean, the two changes give a 1--2%
speed-up.
ICH: Hash expression spans if their source location is captured for panics.
Since the location of some expressions is captured in error message constants, it has an influence on machine code and consequently we need to take them into account by the incr. comp. hash. This PR makes this happen for `+, -, *, /, %` and for array indexing -- let me know if I forgot anything.
In the future we might want to change the codegen strategy for those error messages, so that they are stored in a separate object file with a stable symbol name, so that only this object file has to be regenerated when source locations change. This strategy would also eliminate unnecessary duplications due to monomorphization, as @arielb1 has pointed out on IRC. I opened https://github.com/rust-lang/rust/issues/37512, so we don't forget about this.
r? @nikomatsakis
std: Stabilize and deprecate APIs for 1.13
This commit is intended to be backported to the 1.13 branch, and works with the
following APIs:
Stabilized
* `i32::checked_abs`
* `i32::wrapping_abs`
* `i32::overflowing_abs`
* `RefCell::try_borrow`
* `RefCell::try_borrow_mut`
Deprecated
* `BinaryHeap::push_pop`
* `BinaryHeap::replace`
* `SipHash13`
* `SipHash24`
* `SipHasher` - use `DefaultHasher` instead in the `std::collections::hash_map`
module
Closes#28147Closes#34767Closes#35057Closes#35070
This commit is intended to be backported to the 1.13 branch, and works with the
following APIs:
Stabilized
* `i32::checked_abs`
* `i32::wrapping_abs`
* `i32::overflowing_abs`
* `RefCell::try_borrow`
* `RefCell::try_borrow_mut`
* `DefaultHasher`
* `DefaultHasher::new`
* `DefaultHasher::default`
Deprecated
* `BinaryHeap::push_pop`
* `BinaryHeap::replace`
* `SipHash13`
* `SipHash24`
* `SipHasher` - use `DefaultHasher` instead in the `std::collections::hash_map`
module
Closes#28147Closes#34767Closes#35057Closes#35070