exclusive range patterns
adds `..` patterns to the language under a feature gate (`exclusive_range_pattern`).
This allows turning
``` rust
match i {
0...9 => {},
10...19 => {},
20...29 => {},
_ => {}
}
```
into
``` rust
match i {
0..10 => {},
10..20 => {},
20..30 => {},
_ => {}
}
```
First issue here was the fact that we’d only allow negating integers in i64 range in case the
integer was not infered yes. While this is not the direct cause of the issue, its still good to fix
it.
The real issue here is the code handling specifically the `min_value` literals. While I128_OVERFLOW
has the expected value (0x8000_..._0000), match using this value as a pattern is handled
incorrectly by the stage1 compiler (it seems to be handled correctly, by the stage2 compiler). So
what we do here is extract this pattern into an explicit `==` until the next snapshot.
Fixes#38987
We now cache the inhabitedness of types in the GlobalCtxt.
Rather than calculating whether a type is visibly uninhabited from a given
NodeId we calculate the full set of NodeIds from which a type is visibly
uninhabited then cache that set. We can then use that to answer queries about
the inhabitedness of a type relative to any given node.
Fix is_uninhabited for enum types. It used to assume that an enums variant's
fields were all private.
Fix MIR generation for irrefutable Variant pattern matches. This allows code
like this to work:
let x: Result<32, !> = Ok(123);
let Ok(y) = x;
Carry type information on dummy wildcard patterns. Sometimes we need to expand
these patterns into their constructors and we don't want to be expanding a
TyError into a Constructor::Single.
Remove the assumption at the start of is_useful that any suitably-long array of
wildcard patterns is useful relative the any empty vector. Instead we just
continue to recurse column-wise over the matrix.
This assumption is false in the presence of empty types.
eg. in the simplest case:
let x: ! = ...;
match x {
// This pattern should not be considered useful by the algorithm
_ => ...
}
This commit introduces 128-bit integers. Stage 2 builds and produces a working compiler which
understands and supports 128-bit integers throughout.
The general strategy used is to have rustc_i128 module which provides aliases for iu128, equal to
iu64 in stage9 and iu128 later. Since nowhere in rustc we rely on large numbers being supported,
this strategy is good enough to get past the first bootstrap stages to end up with a fully working
128-bit capable compiler.
In order for this strategy to work, number of locations had to be changed to use associated
max_value/min_value instead of MAX/MIN constants as well as the min_value (or was it max_value?)
had to be changed to use xor instead of shift so both 64-bit and 128-bit based consteval works
(former not necessarily producing the right results in stage1).
This commit includes manual merge conflict resolution changes from a rebase by @est31.
[9/n] rustc: move type information out of AdtDef and TraitDef.
_This is part of a series ([prev](https://github.com/rust-lang/rust/pull/37688) | [next]()) of patches designed to rework rustc into an out-of-order on-demand pipeline model for both better feature support (e.g. [MIR-based](https://github.com/solson/miri) early constant evaluation) and incremental execution of compiler passes (e.g. type-checking), with beneficial consequences to IDE support as well.
If any motivation is unclear, please ask for additional PR description clarifications or code comments._
<hr>
Both `AdtDef` and `TraitDef` contained type information (field types, generics and predicates) which was required to create them, preventing their use before that type information exists, or in the case of field types, *mutation* was required, leading to a variance-magicking implementation of `ivar`s.
This PR takes that information out and the resulting cleaner setup could even eventually end up merged with HIR, because, just like `AssociatedItem` before it, there's no dependency on types anymore.
(With one exception, variant discriminants should probably be moved into their own map later.)
They don't implement FnLikeNode anymore, instead are handled differently
further up in the call tree. Also, keep less information (just def ids
for the args).
This changes structures like this:
```
[ ExprArray | 8 | P ]
|
v
[ P | P | P | P | P | P | P | P ]
|
v
[ ExprTup | 2 | P ]
|
v
[ P | P ]
|
v
[ Expr ]
```
to this:
```
[ ExprArray | 8 | P ]
|
v
[ [ ExprTup | 2 | P ] | ... ]
|
v
[ Expr | Expr ]
```