* All globals marked as `pub` won't have the `internal` linkage type set
* All global references across crates are forced to use the address of the
global in the other crate via an external reference.
r? @graydon
Closes#8179
Change the former repetition::
for 5.times { }
to::
do 5.times { }
.times() cannot be broken with `break` or `return` anymore; for those
cases, use a numerical range loop instead.
* All globals marked as `pub` won't have the `internal` linkage type set
* All global references across crates are forced to use the address of the
global in the other crate via an external reference.
This fixes the recently introduced peak memory usage regression by
freeing the intermediate results as soon as they're not required
anymore instead of keeping them around for the whole compilation
process.
Refs #8077
Adds a fence operation to close#8061
Also adds static initializers to for atomic types. Since the fields are private, you aren't able to have `static mut` variables that are an atomic type. Each atomic type's initializer starts at a 0-value (so unset for `AtomicFlag` and false for `AtomicBool`).
The purpose here is to get rid of compile_upto, which pretty much always requires the user to read the source to figure out what it does. It's replaced by a sequence of obviously-named functions:
- phase_1_parse_input(sess, cfg, input);
- phase_2_configure_and_expand(sess, cfg, crate);
- phase_3_run_analysis_passes(sess, expanded_crate);
- phase_4_translate_to_llvm(sess, expanded_crate, &analysis, outputs);
- phase_5_run_llvm_passes(sess, &trans, outputs);
- phase_6_link_output(sess, &trans, outputs);
Each of which takes what it takes and returns what it returns, with as little variation as possible in behaviour: no "pairs of options" and "pairs of control flags". You can tell if you missed a phase because you will be missing a `phase_N` call to some `N` between 1 and 6.
It does mean that people invoking librustc from outside need to write more function calls. The benefit is that they can _figure out what they're doing_ much more easily, and stop at any point, rather than further overloading the tangled logic of `compile_upto`.
As the title says, valid debug info is now generated for any kind of pattern-based bindings like an example from the automated tests:
```rust
let ((u, v), ((w, (x, Struct { a: y, b: z})), Struct { a: ae, b: oe }), ue) =
((25, 26), ((27, (28, Struct { a: 29, b: 30})), Struct { a: 31, b: 32 }), 33);
```
(Not that you would necessarily want to do a thing like that :P )
Fixes#2533
Previously having optional lang_items caused an assertion failure at
compile-time, and then once that was fixed there was a segfault at runtime of
using a NULL crate-map (crates with no_std)
Hi,
As noted in #6804, a pattern that contains `NaN` will never match because `NaN != NaN`. This adds a warning for such a case. The first commit handles the basic case and the second one generalizes it to more complex patterns using `walk_pat`.
Until now, we only optimized away impossible branches when there is a
literal true/false in the code. But since the LLVM IR builder already does
constant folding for us, we can trivially expand that to work with
constants as well.
Refs #7834