Implement constant support in MIR.
All of the intended features in `trans::consts` are now supported by `mir::constant`.
The implementation is considered a temporary measure until `miri` replaces it.
A `-Z orbit` bootstrap build will only translate LLVM IR from AST for `#[rustc_no_mir]` functions.
Furthermore, almost all checks of constant expressions have been moved to MIR.
In non-`const` functions, trees of temporaries are promoted, as per RFC 1414 (rvalue promotion).
Promotion before MIR borrowck would allow reasoning about promoted values' lifetimes.
The improved checking comes at the cost of four `[breaking-change]`s:
* repeat counts must contain a constant expression, e.g.:
`let arr = [0; { println!("foo"); 5 }];` used to be allowed (it behaved like `let arr = [0; 5];`)
* dereference of a reference to a `static` cannot be used in another `static`, e.g.:
`static X: [u8; 1] = [1]; static Y: u8 = (&X)[0];` was unintentionally allowed before
* the type of a `static` *must* be `Sync`, irrespective of the initializer, e.g.
`static FOO: *const T = &BAR;` worked as `&T` is `Sync`, but it shouldn't because `*const T` isn't
* a `static` cannot wrap `UnsafeCell` around a type that *may* need drop, e.g.
`static X: MakeSync<UnsafeCell<Option<String>>> = MakeSync(UnsafeCell::new(None));`
was previously allowed based on the fact `None` alone doesn't need drop, but in `UnsafeCell`
it can be later changed to `Some(String)` which *does* need dropping
The drop restrictions are relaxed by RFC 1440 (#33156), which is implemented, but feature-gated.
However, creating `UnsafeCell` from constants is unstable, so users can just enable the feature gate.
There is now a CoreEmitter that everything desugars to, but without
losing any information. Also remove RenderSpan::FileLine. This lets the
rustc_driver tests build.
Major changes:
- Remove old snippet rendering code and use the new stuff.
- Introduce `span_label` method to add a label
- Remove EndSpan mode and replace with a fn to get the last
character of a span.
- Stop using `Option<MultiSpan>` and just use an empty `MultiSpan`
- and probably a bunch of other stuff :)
Remove the requirement that ast->hir lowering be reproducible
This PR changes the ast->hir lowerer to be non-reproducible, and it removes the lowering context's id cache.
If the `hir` of an `ast` node needs to be reproduced, we can use the hir map instead of the lowerer -- for example, `tcx.map.expect_expr(expr.id)` instead of `lower_expr(lcx, expr)`.
r? @nrc
rustc_driver: Allow running the compiler with a FileLoader
cc @nrc. I chose to implement this in such a way that it doesn't break anything. Please let me know if you want me to change anything.
Feature gate clean
This PR does a bit of cleaning in the feature-gate-handling code of libsyntax. It also fixes two bugs (#32782 and #32648). Changes include:
* Change the way the existing features are declared in `feature_gate.rs`. The array of features and the `Features` struct are now defined together by a single macro. `featureck.py` has been updated accordingly. Note: there are now three different arrays for active, removed and accepted features instead of a single one with a `Status` item to tell wether a feature is active, removed, or accepted. This is mainly due to the way I implemented my macro in the first time and I can switch back to a single array if needed. But an advantage of the way it is now is that when an active feature is used, the parser only searches through the list of active features. It goes through the other arrays only if the feature is not found. I like to think that error checking (in this case, checking that an used feature is active) does not slow down compilation of valid code. :) But this is not very important...
* Feature-gate checking pass now use the `Features` structure instead of looking through a string vector. This should speed them up a bit. The construction of the `Features` struct should be faster too since it is build directly when parsing features instead of calling `has_feature` dozens of times.
* The MacroVisitor pass has been removed, it was mostly useless since the `#[cfg]-stripping` phase happens before (fixes#32648). The features that must actually be checked before expansion are now checked at the time they are used. This also allows us to check attributes that are generated by macro expansion and not visible to MacroVisitor, but are also removed by macro expansion and thus not visible to PostExpansionVisitor either. This fixes#32782. Note that in order for `#[derive_*]` to be feature-gated but still accepted when generated by `#[derive(Trait)]`, I had to do a little bit of trickery with spans that I'm not totally confident into. Please review that part carefully. (It's in `libsyntax_ext/deriving/mod.rs`.)::
Note: this is a [breaking change], since programs with feature-gated attributes on macro-generated macro invocations were not rejected before. For example:
```rust
macro_rules! bar (
() => ()
);
macro_rules! foo (
() => (
#[allow_internal_unstable] //~ ERROR allow_internal_unstable side-steps
bar!();
);
);
```
foo!();
In fact, we make JSOn the default and add an option for save-analysis-csv for the legacy behaviour.
We also rename some bits and pieces `dxr` -> `save-analysis`
This pass was supposed to check use of gated features before
`#[cfg]`-stripping but this was not the case since it in fact happens
after. Checks that are actually important and must be done before macro
expansion are now made where the features are actually used. Close#32648.
Also ensure that attributes on macro-generated macro invocations are
checked as well. Close#32782 and #32655.
Compute `target_feature` from LLVM
This is a work-in-progress fix for #31662.
The logic that computes the target features from the command line has been replaced with queries to the `TargetMachine`.
Assert that the feature strings are NUL terminated, so that they will
be well-formed as C strings.
This is a safety check to ease the maintaninace and update of the
feature lists.
The different generations of ARM floating point VFP correspond to the
LLVM CPU features named `vfp2`, `vfp3`, and `vfp4`; they are now
exposed in Rust under the same names.
This commit fixes some crashes that would occour when checking if the
`vfp` feature exists (the crash occurs because the linear scan of the
LLVM feature goes past the end of the features whenever it searches
for a feature that does not exist in the LLVM tables).
rustdoc: Fix testing no_run code blocks
This was a regression introduced by #31250 where the compiler deferred returning
the results of compilation a little too late (after the `Stop` check was looked
at). This commit alters the stop point to first try to return an erroneous
`result` and only if it was successful return the sentinel `Err(0)`.
Closes#31576
This was a regression introduced by #31250 where the compiler deferred returning
the results of compilation a little too late (after the `Stop` check was looked
at). This commit alters the stop point to first try to return an erroneous
`result` and only if it was successful return the sentinel `Err(0)`.
Closes#31576
Save/load incremental compilation dep graph
Contains the code to serialize/deserialize the dep graph to disk between executions. We also hash the item contents and compare to the new hashes. Also includes a unit test harness. There are definitely some known limitations, such as https://github.com/rust-lang/rust/issues/32014 and https://github.com/rust-lang/rust/issues/32015, but I am leaving those for follow-up work.
Note that this PR builds on https://github.com/rust-lang/rust/pull/32007, so the overlapping commits can be excluded from review.
r? @michaelwoerister