We get a little more functionality from libuv for these kinds of streams (things
like terminal dimentions), and it also appears to more gracefully handle the
stream being a window. Beforehand, if you used stdio and hit CTRL+d on a
process, libuv would continually return 0-length successful reads instead of
interpreting that the stream was closed.
I was hoping to be able to write tests for this, but currently the testing
infrastructure doesn't allow tests with a stdin and a stdout, but this has been
manually tested! (not that it means much)
- Adds the `Sample` and `IndependentSample` traits for generating numbers where there are parameters (e.g. a list of elements to draw from, or the mean/variance of a normal distribution). The former takes `&mut self` and the latter takes `&self` (this is the only difference).
- Adds proper `Normal` and `Exp`-onential distributions
- Adds `Range` which generates `[lo, hi)` generically & properly (via a new trait) replacing the incorrect behaviour of `Rng.gen_integer_range` (this has become `Rng.gen_range` for convenience, it's far more efficient to use `Range` itself)
- Move the `Weighted` struct from `std::rand` to `std::rand::distributions` & improve it
- optimisations and docs
I'm planning on doing more updates, but the section in the tutorial stood out at me since the 'rust' tool no longer exists, this should probably be removed to lessen confusion.
This reifies the computations required for uniformity done by
(the old) `Rng.gen_integer_range` (now Rng.gen_range), so that they can
be amortised over many invocations, if it is called in a loop.
Also, it makes it correct, but using a trait + impls for each type,
rather than trying to coerce `Int` + `u64` to do the right thing. This
also makes it more extensible, e.g. big integers could & should
implement SampleRange.
This commit re-introduces the functionality of __morestack in a way that it was
not originally anticipated. Rust does not currently have segmented stacks,
rather just large stack segments. We do not detect when these stack segments are
overrun currently, but this commit leverages __morestack in order to check this.
This commit purges a lot of the old __morestack and stack limit C++
functionality, migrating the necessary chunks to rust. The stack limit is now
entirely maintained in rust, and the "main logic bits" of __morestack are now
also implemented in rust as well.
I put my best effort into validating that this currently builds and runs successfully on osx and linux 32/64 bit, but I was unable to get this working on windows. We never did have unwinding through __morestack frames, and although I tried poking at it for a bit, I was unable to understand why we don't get unwinding right now.
A focus of this commit is to implement as much of the logic in rust as possible. This involved some liberal usage of `no_split_stack` in various locations, along with some use of the `asm!` macro (scary). I modified a bit of C++ to stop calling `record_sp_limit` because this is no longer defined in C++, rather in rust.
Another consequence of this commit is that `thread_local_storage::{get, set}` must both be flagged with `#[rust_stack]`. I've briefly looked at the implementations on osx/linux/windows to ensure that they're pretty small stacks, and I'm pretty sure that they're definitely less than 20K stacks, so we probably don't have a lot to worry about.
Other things worthy of note:
* The default stack size is now 4MB instead of 2MB. This is so that when we request 2MB to call a C function you don't immediately overflow because you have consumed any stack at all.
* `asm!` is actually pretty cool, maybe we could actually define context switching with it?
* I wanted to add links to the internet about all this jazz of storing information in TLS, but I was only able to find a link for the windows implementation. Otherwise my suggestion is just "disassemble on that arch and see what happens"
* I put my best effort forward on arm/mips to tweak __morestack correctly, we have no ability to test this so an extra set of eyes would be useful on these spots.
* This is all really tricky stuff, so I tried to put as many comments as I thought were necessary, but if anything is still unclear (or I completely forgot to take something into account), I'm willing to write more!
This commit resumes management of the stack boundaries and limits when switching
between tasks. This additionally leverages the __morestack function to run code
on "stack overflow". The current behavior is to abort the process, but this is
probably not the best behavior in the long term (for deails, see the comment I
wrote up in the stack exhaustion routine).
Rewrite the entire `std::path` module from scratch.
`PosixPath` is now based on `~[u8]`, which fixes#7225.
Unnecessary allocation has been eliminated.
There are a lot of clients of `Path` that still assume utf-8 paths.
This is covered in #9639.
...al work
This is causing really awful scheduler behavior where the main thread scheduler is
continually waking up, stealing work, discovering it can't actually run the work,
and sending it off to another scheduler.
No test cases because we don't have suitable instrumentation for it.
Add a new trait BytesContainer that is implemented for both byte vectors
and strings.
Convert Path::from_vec and ::from_str to one function, Path::new().
Remove all the _str-suffixed mutation methods (push, join, with_*,
set_*) and modify the non-suffixed versions to use BytesContainer.
Remove the old path.
Rename path2 to path.
Update all clients for the new path.
Also make some miscellaneous changes to the Path APIs to help the
adoption process.
This is causing really awful scheduler behavior where the main thread scheduler is
continually waking up, stealing work, discovering it can't actually run the work,
and sending it off to another scheduler.
This patch removes the code responsible for handling older CrateMap versions (as discussed during #9593). Only the new (safer) layout is supported now.
This implements a number of the baby steps needed to start eliminating everything inside of `std::io`. It turns out that there are a *lot* of users of that module, so I'm going to try to tackle them separately instead of bringing down the whole system all at once.
This pull implements a large amount of unimplemented functionality inside of `std::rt::io` including:
* Native file I/O (file descriptors, *FILE)
* Native stdio (through the native file descriptors)
* Native processes (extracted from `std::run`)
I also found that there are a number of users of `std::io` which desire to read an input line-by-line, so I added an implementation of `read_until` and `read_line` to `BufferedReader`.
With all of these changes in place, I started to axe various usages of `std::io`. There's a lot of one-off uses here-and-there, but the major use-case remaining that doesn't have a fantastic solution is `extra::json`. I ran into a few compiler bugs when attempting to remove that, so I figured I'd come back to it later instead.
There is one fairly major change in this pull, and it's moving from native stdio to uv stdio via `print` and `println`. Unfortunately logging still goes through native I/O (via `dumb_println`). This is going to need some thinking, because I still want the goal of logging/printing to be 0 allocations, and this is not possible if `io::stdio::stderr()` is called on each log message. Instead I think that this may need to be cached as the `logger` field inside the `Task` struct, but that will require a little more workings to get right (this is also a similar problem for print/println, do we cache `stdout()` to not have to re-create it every time?).
This changes an `assert_once_ever!` assertion to just a plain old assertion
around an atomic boolean to ensure that one particular runtime doesn't attempt
to exit twice.
Closes#9739
This changes an `assert_once_ever!` assertion to just a plain old assertion
around an atomic boolean to ensure that one particular runtime doesn't attempt
to exit twice.
Closes#9739