Strip prefix instead of replacing it with empty string
r? `@lcnr,` since you reviewed my other PR in the area.
`@rustbot` modify labels +C-cleanup +T-compiler
Replace simple `if let` constructs with Option::map
Replaces a few constructs of the form
```
if let Some(x) = var {
Some(...)
} else {
None
}
```
with calls to `Option::map`.
`@rustbot` modify labels +C-cleanup +T-compiler
Validate naked functions definitions
Validate that naked functions are defined in terms of a single inline assembly
block that uses only `const` and `sym` operands and has `noreturn` option.
Implemented as future incompatibility lint with intention to migrate it into
hard error. When it becomes a hard error it will ensure that naked functions are
either unsafe or contain an unsafe block around the inline assembly. It will
guarantee that naked functions do not reference functions parameters (obsoleting
part of existing checks from #79411). It will limit the definitions of naked
functions to what can be reliably supported. It will also reject naked functions
implemented using legacy LLVM style assembly since it cannot satisfy those
conditions.
https://github.com/rust-lang/rfcs/pull/2774https://github.com/rust-lang/rfcs/pull/2972
Support repr(simd) on ADTs containing a single array field
This is a squash and rebase of `@gnzlbg's` #63531
I've never actually written code in the compiler before so just fumbled my way around until it would build 😅
I imagine there'll be some work we need to do in `rustc_codegen_cranelift` too for this now, but might need some input from `@bjorn3` to know what that is.
cc `@rust-lang/project-portable-simd`
-----
This PR allows using `#[repr(simd)]` on ADTs containing a single array field:
```rust
#[repr(simd)] struct S0([f32; 4]);
#[repr(simd)] struct S1<const N: usize>([f32; N]);
#[repr(simd)] struct S2<T, const N: usize>([T; N]);
```
This should allow experimenting with portable packed SIMD abstractions on nightly that make use of const generics.
Properly handle attributes on statements
We now collect tokens for the underlying node wrapped by `StmtKind`
nstead of storing tokens directly in `Stmt`.
`LazyTokenStream` now supports capturing a trailing semicolon after it
is initially constructed. This allows us to avoid refactoring statement
parsing to wrap the parsing of the semicolon in `parse_tokens`.
Attributes on item statements
(e.g. `fn foo() { #[bar] struct MyStruct; }`) are now treated as
item attributes, not statement attributes, which is consistent with how
we handle attributes on other kinds of statements. The feature-gating
code is adjusted so that proc-macro attributes are still allowed on item
statements on stable.
Two built-in macros (`#[global_allocator]` and `#[test]`) needed to be
adjusted to support being passed `Annotatable::Stmt`.
Rollup of 10 pull requests
Successful merges:
- #77758 (suggest turbofish syntax for uninferred const arguments)
- #79000 (Move lev_distance to rustc_ast, make non-generic)
- #79362 (Lower patterns before using the bound variable)
- #79365 (Upgrades the coverage map to Version 4)
- #79402 (Fix typos)
- #79412 (Clean up rustdoc tests by removing unnecessary features)
- #79413 (Fix persisted doctests on Windows / when using workspaces)
- #79420 (Fixes a word typo in librustdoc)
- #79421 (Fix docs formatting for `thir::pattern::_match`)
- #79428 (Fixup compiler docs)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Fixes#79152
This code was already set up to handle indexing an array. However, it
appears that we never end up with an inference variable for the slice
case, so the missing call to `resolve_vars_if_possible` had no effect
until now.
rustc_ast currently has a few dependencies on rustc_lexer. Ideally, an AST
would not have any dependency its lexer, for minimizing unnecessarily
design-time dependencies. Breaking this dependency would also have practical
benefits, since modifying rustc_lexer would not trigger a rebuild of rustc_ast.
This commit does not remove the rustc_ast --> rustc_lexer dependency,
but it does remove one of the sources of this dependency, which is the
code that handles fuzzy matching between symbol names for making suggestions
in diagnostics. Since that code depends only on Symbol, it is easy to move
it to rustc_span. It might even be best to move it to a separate crate,
since other tools such as Cargo use the same algorithm, and have simply
contain a duplicate of the code.
This changes the signature of find_best_match_for_name so that it is no
longer generic over its input. I checked the optimized binaries, and this
function was duplicated at nearly every call site, because most call sites
used short-lived iterator chains, generic over Map and such. But there's
no good reason for a function like this to be generic, since all it does
is immediately convert the generic input (the Iterator impl) to a concrete
Vec<Symbol>. This has all of the costs of generics (duplicated method bodies)
with no benefit.
Changing find_best_match_for_name to be non-generic removed about 10KB of
code from the optimized binary. I know it's a drop in the bucket, but we have
to start reducing binary size, and beginning to tame over-use of generics
is part of that.