This is the last remaining networkig object to implement timeouts for. This
takes advantage of the CancelIo function and the already existing asynchronous
I/O functionality of pipes.
These timeouts all follow the same pattern as established by the timeouts on
acceptors. There are three methods: set_timeout, set_read_timeout, and
set_write_timeout. Each of these sets a point in the future after which
operations will time out.
Timeouts with cloned objects are a little trickier. Each object is viewed as
having its own timeout, unaffected by other objects' timeouts. Additionally,
timeouts do not propagate when a stream is cloned or when a cloned stream has
its timeouts modified.
This commit is just the public interface which will be exposed for timeouts, the
implementation will come in later commits.
Two new methods were added to TcpStream and UnixStream:
fn close_read(&mut self) -> IoResult<()>;
fn close_write(&mut self) -> IoResult<()>;
These two methods map to shutdown()'s behavior (the system call on unix),
closing the reading or writing half of a duplex stream. These methods are
primarily added to allow waking up a pending read in another task. By closing
the reading half of a connection, all pending readers will be woken up and will
return with EndOfFile. The close_write() method was added for symmetry with
close_read(), and I imagine that it will be quite useful at some point.
Implementation-wise, librustuv got the short end of the stick this time. The
native versions just delegate to the shutdown() syscall (easy). The uv versions
can leverage uv_shutdown() for tcp/unix streams, but only for closing the
writing half. Closing the reading half is done through some careful dancing to
wake up a pending reader.
As usual, windows likes to be different from unix. The windows implementation
uses shutdown() for sockets, but shutdown() is not available for named pipes.
Instead, CancelIoEx was used with same fancy synchronization to make sure
everyone knows what's up.
cc #11165
Two new methods were added to TcpStream and UnixStream:
fn close_read(&mut self) -> IoResult<()>;
fn close_write(&mut self) -> IoResult<()>;
These two methods map to shutdown()'s behavior (the system call on unix),
closing the reading or writing half of a duplex stream. These methods are
primarily added to allow waking up a pending read in another task. By closing
the reading half of a connection, all pending readers will be woken up and will
return with EndOfFile. The close_write() method was added for symmetry with
close_read(), and I imagine that it will be quite useful at some point.
Implementation-wise, librustuv got the short end of the stick this time. The
native versions just delegate to the shutdown() syscall (easy). The uv versions
can leverage uv_shutdown() for tcp/unix streams, but only for closing the
writing half. Closing the reading half is done through some careful dancing to
wake up a pending reader.
As usual, windows likes to be different from unix. The windows implementation
uses shutdown() for sockets, but shutdown() is not available for named pipes.
Instead, CancelIoEx was used with same fancy synchronization to make sure
everyone knows what's up.
cc #11165
These implementations must live in libstd right now because the fmt module has
not been migrated yet. This will occur in a later PR.
Just to be clear, there are new extension traits, but they are not necessary
once the std::fmt module has migrated to libcore, which is a planned migration
in the future.
This adds an small of failure to libcore, hamstrung by the fact that std::fmt
hasn't been migrated yet. A few asserts were re-worked to not use std::fmt
features, but these asserts can go back to their original form once std::fmt has
migrated.
The current failure implementation is to just have some symbols exposed by
std::rt::unwind that are linked against by libcore. This is an explicit circular
dependency, unfortunately. This will be officially supported in the future
through compiler support with much nicer failure messages. Additionally, there
are two depended-upon symbols today, but in the future there will only be one
(once std::fmt has migrated).
This moves as much allocation as possible from teh std::str module into
core::str. This includes essentially all non-allocating functionality, mostly
iterators and slicing and such.
This primarily splits the Str trait into only having the as_slice() method,
adding a new StrAllocating trait to std::str which contains the relevant new
allocation methods. This is a breaking change if any of the methods of "trait
Str" were overriden. The old functionality can be restored by implementing both
the Str and StrAllocating traits.
[breaking-change]
This commit adds a new trait, MutableVectorAllocating, which represents
functions on vectors which can allocate.
This is another extension trait to slices which should be removed once a lang
item exists for the ~ allocation.
This implements all traits inside of core::num for all the primitive types,
removing all the functionality from libstd. The std modules reexport all of the
necessary items from the core modules.
This strips out all string-related functionality from the num module. The
inherited functionality is all that will be implemented in libcore (for now).
Primarily, libcore will not implement the Float trait or any string-related
functionality.
It may be possible to migrate string parsing functionality into libcore in the
future, but for now it will remain in libstd.
All functionality in core::num is reexported in std::num.
This commit removes the std::{managed, reference} modules. The modules serve
essentially no purpose, and the only free function removed was `managed::ptr_eq`
which can be achieved by comparing references.
[breaking-change]
This removes the TotalOrd and TotalEq implementation macros, they will be added
later to the numeric modules (where the other comparison implementations live).
for `~str`/`~[]`.
Note that `~self` still remains, since I forgot to add support for
`Box<self>` before the snapshot.
r? @brson or @alexcrichton or whoever
for `~str`/`~[]`.
Note that `~self` still remains, since I forgot to add support for
`Box<self>` before the snapshot.
How to update your code:
* Instead of `~EXPR`, you should write `box EXPR`.
* Instead of `~TYPE`, you should write `Box<Type>`.
* Instead of `~PATTERN`, you should write `box PATTERN`.
[breaking-change]
The underlying I/O objects implement a good deal of various options here and
there for tuning network sockets and how they perform. Most of this is a relic
of "whatever libuv provides", but these options are genuinely useful.
It is unclear at this time whether these options should be well supported or
not, or whether they have correct names or not. For now, I believe it's better
to expose the functionality than to not, but all new methods are added with
an #[experimental] annotation.
The `std::bitflags::bitflags!` macro did not provide support for
adding attributes to the generates structure, due to limitations in
the parser for macros. This patch works around the parser limitations
by requiring a `flags` keyword in the `bitflags!` invocations:
bitflags!(
#[deriving(Hash)]
#[doc="Three flags"]
flags Flags: u32 {
FlagA = 0x00000001,
FlagB = 0x00000010,
FlagC = 0x00000100
}
)
The intent of `std::bitflags` is to allow building type-safe wrappers
around C-style flags APIs. But in addition to construction these flags
from the Rust side, we need a way to convert them from the C
side. This patch adds a `from_bits` function, which is unsafe since
the bits in question may not represent a valid combination of flags.
Finally, this patch changes `std::io::FilePermissions` from an exposed
`u32` representation to a typesafe representation (that only allows valid
flag combinations) using the `std::bitflags`.
Closes#6085.
Turning a `&T` into an `&mut T` is undefined behaviour, and needs to be
done very very carefully. Providing a convenience function for exactly
this task is a bad idea, just tempting people into doing the wrong
thing.
(The right thing is to use types like `Cell`, `RefCell` or `Unsafe`.)
cc https://github.com/mozilla/rust/issues/13933
The logging macros now create a LogRecord, and pass that to the Logger. This will allow custom loggers to change the formatting, and possible filter on more properties of the log record.
DefaultLogger's formatting was taken from Python's default formatting:
`LEVEL:from: message`
Also included: fmt::Arguments now implement Show, so they can be used to
extend format strings.
@alexcrichton r?
This patch changes `std::io::FilePermissions` from an exposed `u32`
representation to a typesafe representation (that only allows valid
flag combinations) using the `std::bitflags`, thus ensuring a greater
degree of safety on the Rust side.
Despite the change to the type, most code should continue to work
as-is, sincde the new type provides bit operations in the style of C
flags. To get at the underlying integer representation, use the `bits`
method; to (unsafely) convert to `FilePermissions`, use
`FilePermissions::from_bits`.
Closes#6085.
[breaking-change]
The intent of `std::bitflags` is to allow building type-safe wrappers
around C-style flags APIs. But in addition to construction these flags
from the Rust side, we need a way to convert them from the C
side. This patch adds a `from_bits` function, which is unsafe since
the bits in question may not represent a valid combination of flags.
The `std::bitflags::bitflags!` macro did not provide support for
adding attributes to the generated structure or flags, due to
limitations in the parser for macros. This patch works around the
parser limitations by requiring a `flags` keyword in the overall
`bitflags!` invocation, and a `static` keyword for each flag:
bitflags!(
#[deriving(Hash)]
#[doc="Three flags"]
flags Flags: u32 {
#[doc="The first flag"]
static FlagA = 0x00000001,
static FlagB = 0x00000010,
static FlagC = 0x00000100
}
)