This manifistated in #90195 with compiler being unable to keep
one candidate for a trait impl, if where is a global impl and more
than one trait bound in the where clause.
Before #87280 `candidate_should_be_dropped_in_favor_of` was using
`TypeFoldable::is_global()` that was enough to discard the two
`ParamCandidate`s. But #87280 changed it to use
`TypeFoldable::is_known_global()` instead, which is pessimistic, so
now the compiler drops the global impl instead (because
`is_known_global` is not sure) and then can't decide between the
two `ParamCandidate`s.
Switching it to use `is_global` again solves the issue.
Fixes#90195.
Before, it was only measuring one callsite of `build_impl`, and it
incremented the call count even if `build_impl` returned early because
the `did` was already inlined.
Now, it measures all calls, minus calls that return early.
Union field access is currently qualified based on the qualification of
a value previously assigned to the union. At the same time, every union
access transmutes the content of the union, which might result in a
different qualification.
For example, consider constants A and B as defined below, under the
current rules neither contains interior mutability, since a value used
in the initial assignment did not contain `UnsafeCell` constructor.
```rust
#![feature(untagged_unions)]
union U { i: u32, c: std::cell::Cell<u32> }
const A: U = U { i: 0 };
const B: std::cell::Cell<u32> = unsafe { U { i: 0 }.c };
```
To avoid the issue, the changes here propose to consider the content of
a union as opaque and use type based qualification for union types.
Rollup of 5 pull requests
Successful merges:
- #90239 (Consistent big O notation in map.rs)
- #90267 (fix: inner attribute followed by outer attribute causing ICE)
- #90288 (Add hint for people missing `TryFrom`, `TryInto`, `FromIterator` import pre-2021)
- #90304 (Add regression test for #75961)
- #90344 (Add tracking issue number to const_cstr_unchecked)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Add tracking issue number to const_cstr_unchecked
Also created a tracking issue, see #90343.
I think it makes sense to stabilize this somewhat soon considering abuse of `transmute` to have this feature in constants, see https://crates.io/crates/cstr for an example. Code can be rewritten to use `mem::transmute` to work on stable.
Add hint for people missing `TryFrom`, `TryInto`, `FromIterator` import pre-2021
Adds a hint anytime a `TryFrom`, `TryInto`, `FromIterator` import is suggested noting that these traits are automatically imported in Edition 2021.
fix: inner attribute followed by outer attribute causing ICE
Fixes#87936, #88938, and #89971.
This removes the assertion that validates that there are no outer attributes following inner attributes. Where the inner attribute is invalid you get an actual error.
Clean up special function const checks
Mark them as const and `#[rustc_do_not_const_check]` instead of hard-coding them in const-eval checks.
r? `@oli-obk`
`@rustbot` label A-const-eval T-compiler
Using short-circuit operators makes it easier to perform some kinds of
source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86 assembly is the same
between the old and new versions:
```
xor eax, eax
test esi, esi
je .LBB0_1
cmp edi, -2147483648
jne .LBB0_4
cmp esi, -1
jne .LBB0_4
ret
.LBB0_1:
ret
.LBB0_4:
mov eax, edi
cdq
idiv esi
mov eax, 1
ret
```
Using short-circuit operators makes it easier to perform some kinds of
source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86 assembly is the same
between the old and new versions:
```
xor eax, eax
test esi, esi
je .LBB0_1
cmp edi, -2147483648
jne .LBB0_4
cmp esi, -1
jne .LBB0_4
ret
.LBB0_1:
ret
.LBB0_4:
mov eax, edi
cdq
idiv esi
mov edx, eax
mov eax, 1
ret
```
Using short-circuiting operators makes it easier to perform some kinds
of source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86_64 assembly is
equivalent between the old and new versions.
Old assembly of that condition:
```
mov rax, qword ptr [rdi + rdx + 8]
or rax, qword ptr [rdi + rdx]
test rax, r9
je .LBB0_7
```
New assembly of that condition:
```
mov rax, qword ptr [rdi + rdx]
or rax, qword ptr [rdi + rdx + 8]
test rax, r8
je .LBB0_7
```
Using short-circuiting operators makes it easier to perform some kinds
of source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86_64 assembly is the same
between the old and new versions:
```
mov eax, edi
add dl, -1
sbb eax, esi
setb dl
ret
```
Using short-circuiting operators makes it easier to perform some kinds
of source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86_64 assembly is the same
between the old and new versions:
```
mov eax, edi
add dl, -1
adc eax, esi
setb dl
ret
```
Add LLVM CFI support to the Rust compiler
This PR adds LLVM Control Flow Integrity (CFI) support to the Rust compiler. It initially provides forward-edge control flow protection for Rust-compiled code only by aggregating function pointers in groups identified by their number of arguments.
Forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space) will be provided in later work as part of this project by defining and using compatible type identifiers (see Type metadata in the design document in the tracking issue #89653).
LLVM CFI can be enabled with -Zsanitizer=cfi and requires LTO (i.e., -Clto).
Thank you, `@eddyb` and `@pcc,` for all the help!
Rollup of 3 pull requests
Successful merges:
- #90154 (rustdoc: Remove `GetDefId`)
- #90232 (rustdoc: Use TTF based font instead of OTF for CJK glyphs to improve readability)
- #90278 (rustdoc: use better highlighting for *const, *mut, and &mut)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
rustdoc: Use TTF based font instead of OTF for CJK glyphs to improve readability
Due to Windows' implementation of font rendering, OpenType fonts can be distorted. So the existing font, Noto Sans KR, is not very readable on Windows. This PR improves readability of Korean glyphs on Windows.
## Before
![원1](https://user-images.githubusercontent.com/11029378/138592394-16b15787-532d-4421-a5eb-ed85675290fa.png)
## After
![원2](https://user-images.githubusercontent.com/11029378/138592409-f3a440ee-f0fc-40e4-9561-42c479439c9f.png)
The fonts included in this PR are licensed under the SIL Open Font License and generated with these commands:
```sh
pyftsubset NanumBarunGothic.ttf \
--unicodes=U+AC00-D7AF,U+1100-11FF,U+3130-318F,U+A960-A97F,U+D7B0-D7FF \
--output-file=NanumBarunGothic.ttf.woff --flavor=woff
```
```sh
pyftsubset NanumBarunGothic.ttf \
--unicodes=U+AC00-D7AF,U+1100-11FF,U+3130-318F,U+A960-A97F,U+D7B0-D7FF \
--output-file=NanumBarunGothic.ttf.woff2 --flavor=woff2
```
r? ``@GuillaumeGomez``
Properly check `target_features` not to trigger an assertion
Fixes#89875
I think it should be a condition instead of an assertion to check if it's a register as it's possible that `reg` is a register class.
Also, this isn't related to the issue directly, but `is_target_supported` doesn't check `target_features` attributes. Is there any way to check it on rustc_codegen_llvm?
r? `@Amanieu`
Remove fNN::lerp
Lerp is [surprisingly complex with multiple tradeoffs depending on what guarantees you want to provide](https://github.com/rust-lang/rust/issues/86269#issuecomment-869108301) (and what you're willing to drop for raw speed), so we don't have consensus on what implementation to use, let alone what signature - `t.lerp(a, b)` nicely puts `a, b` together, but makes dispatch to lerp custom types with the same signature basically impossible, and major ecosystem crates (e.g. nalgebra, glium) use `a.lerp(b, t)`, which is easily confusable. It was suggested to maybe provide a `Lerp<T>` trait and `t.lerp([a, b])`, which _could_ be implemented by downstream math libraries for their types, but also significantly raises the bar from a simple fNN method to a full trait, and does nothing to solve the implementation question. (It also raises the question of whether we'd support higher-order bezier interpolation.)
The only consensus we have is the lack of consensus, and the [general temperature](https://github.com/rust-lang/rust/issues/86269#issuecomment-951347135) is that we should just remove this method (giving the method space back to 3rd party libs) and revisit this if (and likely only if) IEEE adds lerp to their specification.
If people want a lerp, they're _probably_ already using (or writing) a math support library, which provides a lerp function for its custom math types and can provide the same lerp implementation for the primitive types via an extension trait.
See also [previous Zulip discussion](https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/lerp.20API.20design)
cc ``@clarfonthey`` (original PR author), ``@m-ou-se`` (original r+), ``@scottmcm`` (last voice in tracking issue, prompted me to post this)
Closes#86269 (removed)
Fix copy-paste error in String::as_mut_vec() docs
Did not expect the comments to be perfectly justified... can't wait to be told to change it to `Vec<u8>`, which destroys the justification 😼