This rewrites them to the current `ItemStatic` production of the compiler, but I
want to get this into a snapshot. It will be illegal to use a `static` in a
pattern of a `match` statement, so all those current uses will need to be
rewritten to `const` once it's implemented. This requires that the stage0
snapshot is able to parse `const`.
cc #17718
prefer `Deref` over `DerefMut` in all other circumstances.
Because the compiler now prefers `Deref`, this can break code that
looked like:
let mut foo = bar.borrow_mut();
(*foo).call_something_that_requires_mutable_self();
Replace this code with:
let mut foo = bar.baz();
(&mut *foo).call_something_that_requires_mutable_self();
Closes#12825.
[breaking-change]
r? @nikomatsakis
Modify ast::ExprMatch to include a new value of type ast::MatchSource,
making it easy to tell whether the match was written literally or
produced via desugaring. This allows us to customize error messages
appropriately.
This makes it easier to experiment with improved quasiquoting as an ordinary
plugin library.
The list of quote macros in feature_gate.rs was already out of sync;
this commit also prevents that problem in the future.
in favor of `move`.
This breaks code that used `move` as an identifier, because it is now a
keyword. Change such identifiers to not use the keyword `move`.
Additionally, this breaks code that was counting on by-value or
by-reference capture semantics for unboxed closures (behind the feature
gate). Change `ref |:|` to `|:|` and `|:|` to `move |:|`.
Part of RFC #63; part of issue #12831.
[breaking-change]
Deprecates the `find_or_*` family of "internal mutation" methods on `HashMap` in
favour of the "external mutation" Entry API as part of RFC 60. Part of #17320,
but this still needs to be done on the rest of the maps. However they don't have
any internal mutation methods defined, so they can be done without deprecating
or breaking anything. Work on `BTree` is part of the complete rewrite in #17334.
The implemented API deviates from the API described in the RFC in two key places:
* `VacantEntry.set` yields a mutable reference to the inserted element to avoid code
duplication where complex logic needs to be done *regardless* of whether the entry
was vacant or not.
* `OccupiedEntry.into_mut` was added so that it is possible to return a reference
into the map beyond the lifetime of the Entry itself, providing functional parity
to `VacantEntry.set`.
This allows the full find_or_insert functionality to be implemented using this API.
A PR will be submitted to the RFC to amend this.
[breaking-change]
This extends cfg-gating to attributes.
```rust
#[cfg_attr(<cfg pattern>, <attr>)]
```
will expand to
```rust
#[<attr>]
```
if the `<cfg pattern>` matches the current cfg environment, and nothing
if it does not. The grammar for the cfg pattern has a simple
recursive structure:
* `value` and `key = "value"` are cfg patterns,
* `not(<cfg pattern>)` is a cfg pattern and matches if `<cfg pattern>`
does not.
* `all(<cfg pattern>, ...)` is a cfg pattern and matches if all of the
`<cfg pattern>`s do.
* `any(<cfg pattern>, ...)` is a cfg pattern and matches if any of the
`<cfg pattern>`s do.
Examples:
```rust
// only derive Show for assert_eq! in tests
#[cfg_attr(test, deriving(Show))]
struct Foo { ... }
// only derive Show for assert_eq! in tests and debug builds
#[cfg_attr(any(test, not(ndebug)), deriving(Show))]
struct Foo { ... }
// ignore a test in certain cases
#[test]
#[cfg_attr(all(not(target_os = "linux"), target_endian = "big"), ignore)]
fn test_broken_thing() { ... }
// Avoid duplication when fixing staging issues in rustc
#[cfg_attr(not(stage0), lang="iter")]
pub trait Iterator<T> { ... }
```
Because I'm still 😷😷😷 , I figured some mindless tasks would be better than trying to finish the ownership guide.
The manual has long been waiting for some ❤️❤️❤️ , and so I gave it a quick once-over. I made small commits in case any of the changes are a bit weird, I mostly did a few things:
1. changed 'manual' to 'reference.' I feel like this name is better. If it's not, It's not a huge deal. it shouldn't be `rust.md` though.
2. word wrapped everything appropriately. Changes 1&2 are in the first commit, so that its' easier to see the changes in the later ones.
3. fixed other small style issues
4. removed references to things that are in the standard library, and not the language itself
There's still lots of gross in here, but I didn't want to pile on too too many changes.
/cc @brson @nikomatsakis
This breaks code like:
struct Foo {
...
}
pub fn make_foo() -> Foo {
...
}
Change this code to:
pub struct Foo { // note `pub`
...
}
pub fn make_foo() -> Foo {
...
}
The `visible_private_types` lint has been removed, since it is now an
error to attempt to expose a private type in a public API. In its place
a `#[feature(visible_private_types)]` gate has been added.
Closes#16463.
RFC #48.
[breaking-change]
Change to resolve and update compiler and libs for uses.
[breaking-change]
Enum variants are now in both the value and type namespaces. This means that
if you have a variant with the same name as a type in scope in a module, you
will get a name clash and thus an error. The solution is to either rename the
type or the variant.
Part of issue #16640. I am leaving this issue open to handle parsing of
higher-rank lifetimes in traits.
This change breaks code that used unboxed closures:
* Instead of `F:|&: int| -> int`, write `F:Fn(int) -> int`.
* Instead of `F:|&mut: int| -> int`, write `F:FnMut(int) -> int`.
* Instead of `F:|: int| -> int`, write `F:FnOnce(int) -> int`.
[breaking-change]
This breaks code that looked like:
mymacro!(static::foo);
... where `mymacro!` expects a path or expression. Change such macros to
not accept keywords followed by `::`.
Closes#17298.
[breaking-change]
The implementation essentially desugars during type collection and AST
type conversion time into the parameter scheme we have now. Only fully
qualified names--e.g. `<T as Foo>::Bar`--are supported.
This prevents confusing errors when accidentally using an assignment
in an `if` expression. For example:
```rust
fn main() {
let x = 1u;
if x = x {
println!("{}", x);
}
}
```
Previously, this yielded:
```
test.rs:4:16: 4:17 error: expected `:`, found `!`
test.rs:4 println!("{}", x);
^
```
With this change, it now yields:
```
test.rs:3:8: 3:13 error: mismatched types: expected `bool`, found `()` (expected bool, found ())
test.rs:3 if x = x {
^~~~~
```
Closes issue #17283
The `StrInterner::clear()` method takes self immutably but can invalidate references returned by `StrInterner::get_ref`. Since `get_ref` is unused, just remove it.
Closes#17181
Sized deallocation makes it pointless to provide an address that never
overlaps with pointers returned by an allocator. Code can branch on the
capacity of the allocation instead of a comparison with this sentinel.
This improves the situation in #8859, and the remaining issues are only
from the logging API, which should be disabled by default in optimized
release builds anyway along with debug assertions. The remaining issues
are part of #17081.
Closes#8859
This adds ‘help’ diagnostic messages to rustc. This is used for anything that
provides help to the user, particularly the `--explain` messages that were
previously integrated into the relevant error message.
type they provide an implementation for.
This breaks code like:
mod foo {
struct Foo { ... }
}
impl foo::Foo {
...
}
Change this code to:
mod foo {
struct Foo { ... }
impl Foo {
...
}
}
Additionally, if you used the I/O path extension methods `stat`,
`lstat`, `exists`, `is_file`, or `is_dir`, note that these methods have
been moved to the the `std::io::fs::PathExtensions` trait. This breaks
code like:
fn is_it_there() -> bool {
Path::new("/foo/bar/baz").exists()
}
Change this code to:
use std::io::fs::PathExtensions;
fn is_it_there() -> bool {
Path::new("/foo/bar/baz").exists()
}
Closes#17059.
RFC #155.
[breaking-change]
The other extension types already worked this way and it can be useful to track some state along with the extension.
I also removed the `BasicMacroExpander` and `BasicIdentMacroExpander` since the span inside of them was never used. The expander function types now directly implement the relevant trait.