the Macro Exterminator ensures that there are no macro invocations in
an AST. This should help make later passes confident that there aren't
hidden items, methods, expressions, etc.
macros can expand into arbitrary items, exprs, etc. This
means that using a default walker or folder on an AST before
macro expansion is complete will miss things (the things that
the macros expand into). As a partial fence against this, this
commit moves the default traversal of macros into a separate
procedure, and makes the default trait implementation signal
an error. This means that Folders and Visitors can traverse
macros if they want to, but they need to explicitly add an
impl that calls the walk_mac or fold_mac procedure
This should prevent problems down the road.
Per discussion with @sfackler, refactored the expander to
change the way that exported macros are collected. Specifically,
a crate now contains a side table of spans that exported macros
go into.
This has two benefits. First, the encoder doesn't need to scan through
the expanded crate in order to discover exported macros. Second, the
expander can drop all expanded macros from the crate, with the pleasant
result that a fully expanded crate contains no macro invocations (which
include macro definitions).
This is a continuation of @brson's work from https://github.com/rust-lang/rust/pull/12144.
This implements the minimal scaffolding that allows mapping diagnostic messages to alpha-numeric codes, which could improve the searchability of errors. In addition, there's a new compiler option, `--explain {code}` which takes an error code and prints out a somewhat detailed explanation of the error. Example:
```rust
fn f(x: Option<bool>) {
match x {
Some(true) | Some(false) => (),
None => (),
Some(true) => ()
}
}
```
```shell
[~/rust]$ ./build/x86_64-apple-darwin/stage2/bin/rustc ./diagnostics.rs --crate-type dylib
diagnostics.rs:5:3: 5:13 error: unreachable pattern [E0001] (pass `--explain E0001` to see a detailed explanation)
diagnostics.rs:5 Some(true) => ()
^~~~~~~~~~
error: aborting due to previous error
[~/rust]$ ./build/x86_64-apple-darwin/stage2/bin/rustc --explain E0001
This error suggests that the expression arm corresponding to the noted pattern
will never be reached as for all possible values of the expression being matched,
one of the preceeding patterns will match.
This means that perhaps some of the preceeding patterns are too general, this
one is too specific or the ordering is incorrect.
```
I've refrained from migrating many errors to actually use the new macros as it can be done in an incremental fashion but if we're happy with the approach, it'd be good to do all of them sooner rather than later.
Originally, I was going to make libdiagnostics a separate crate but that's posing some interesting challenges with semi-circular dependencies. In particular, librustc would have a plugin-phase dependency on libdiagnostics, which itself depends on librustc. Per my conversation with @alexcrichton, it seems like the snapshotting process would also have to change. So for now the relevant modules from libdiagnostics are included using `#[path = ...] mod`.
C structs predominately do not use camel case identifiers, and we have a clear
indicator for what's a C struct now, so excuse all of them from this stylistic
lint.
Similar to the stability attributes, a type annotated with `#[must_use =
"informative snippet"]` will print the normal warning message along with
"informative snippet". This allows the type author to provide some
guidance about why the type should be used.
---
It can be a little unintuitive that something like `v.iter().map(|x|
println!("{}", x));` does nothing: the majority of the iterator adaptors
are lazy and do not execute anything until something calls `next`, e.g.
a `for` loop, `collect`, `fold`, etc.
The majority of such errors can be seen by someone writing something
like the above, i.e. just calling an iterator adaptor and doing nothing
with it (and doing this is certainly useless), so we can co-opt the
`must_use` lint, using the message functionality to give a hint to the
reason why.
Fixes#14666.
Similar to the stability attributes, a type annotated with `#[must_use =
"informative snippet"]` will print the normal warning message along with
"informative snippet". This allows the type author to provide some
guidance about why the type should be used.
This removes a bunch of token types. Tokens now store the original, unaltered
numeric literal (that is still checked for correctness), which is parsed into
an actual number later, as needed, when creating the AST.
This can change how syntax extensions work, but otherwise poses no visible
changes.
[breaking-change]
This patch adds hygiene for methods. This one was more difficult than the others, due principally to issues surrounding `self`. Specifically, there were a whole bunch of places in the code that assumed that a `self` identifier could be discarded and then made up again later, causing the discard of contexts and hygiene breakage.
formerly, the self identifier was being discarded during parsing, which
stymies hygiene. The best fix here seems to be to attach a self identifier
to ExplicitSelf_, a change that rippled through the rest of the compiler,
but without any obvious damage.
The let-syntax expander is different in that it doesn't apply
a mark to its token trees before expansion. This is used
for macro_rules, and it's because macro_rules is essentially
MTWT's let-syntax. You don't want to mark before expand sees
let-syntax, because there's no "after" syntax to mark again.
In some sense, the cleaner approach might be to introduce a new
AST node that macro_rules expands into; this would make it clearer
that the expansion of a macro is distinct from the addition of a
new macro binding.
This should work for now, though...
This commit disables rustc's emission of rpath attributes into dynamic libraries
and executables by default. The functionality is still preserved, but it must
now be manually enabled via a `-C rpath` flag.
This involved a few changes to the local build system:
* --disable-rpath is now the default configure option
* Makefiles now prefer our own LD_LIBRARY_PATH over the user's LD_LIBRARY_PATH
in order to support building rust with rust already installed.
* The compiletest program was taught to correctly pass through the aux dir as a
component of LD_LIBRARY_PATH in more situations.
The major impact of this change is that neither rustdoc nor rustc will work
out-of-the-box in all situations because they are dynamically linked. It must be
arranged to ensure that the libraries of a rust installation are part of the
LD_LIBRARY_PATH. The default installation paths for all platforms ensure this,
but if an installation is in a nonstandard location, then configuration may be
necessary.
Additionally, for all developers of rustc, it will no longer be possible to run
$target/stageN/bin/rustc out-of-the-box. The old behavior can be regained
through the `--enable-rpath` option to the configure script.
This change brings linux/mac installations in line with windows installations
where rpath is not possible.
Closes#11747
[breaking-change]
This updates https://github.com/rust-lang/rust/pull/15075.
Rename `ToStr::to_str` to `ToString::to_string`. The naive renaming ends up with two `to_string` functions defined on strings in the prelude (the other defined via `collections::str::StrAllocating`). To remedy this I removed `StrAllocating::to_string`, making all conversions from `&str` to `String` go through `Show`. This has a measurable impact on the speed of this conversion, but the sense I get from others is that it's best to go ahead and unify `to_string` and address performance for all `to_string` conversions in `core::fmt`. `String::from_str(...)` still works as a manual fast-path.
Note that the patch was done with a script, and ended up renaming a number of other `*_to_str` functions, particularly inside of rustc. All the ones I saw looked correct, and I didn't notice any additional API breakage.
Closes#15046.
closes#13367
[breaking-change] Use `Sized?` to indicate a dynamically sized type parameter or trait (used to be `type`). E.g.,
```
trait Tr for Sized? {}
fn foo<Sized? X: Share>(x: X) {}
```
closes#13367
[breaking-change] Use `Sized?` to indicate a dynamically sized type parameter or trait (used to be `type`). E.g.,
```
trait Tr for Sized? {}
fn foo<Sized? X: Share>(x: X) {}
```
This will break code that looks like:
struct Foo {
...
}
mod Foo {
...
}
Change this code to:
struct Foo {
...
}
impl Foo {
...
}
Or rename the module.
Closes#15205.
[breaking-change]
r? @nick29581
Extend the null ptr optimization to work with slices, closures, procs, & trait objects by using the internal pointers as the discriminant.
This decreases the size of `Option<&[int]>` (and similar) by one word.
This will break code that used the old `Index` trait. Change this code
to use the new `Index` traits. For reference, here are their signatures:
pub trait Index<Index,Result> {
fn index<'a>(&'a self, index: &Index) -> &'a Result;
}
pub trait IndexMut<Index,Result> {
fn index_mut<'a>(&'a mut self, index: &Index) -> &'a mut Result;
}
Closes#6515.
[breaking-change]
r? @nick29581
This will break code that used the old `Index` trait. Change this code
to use the new `Index` traits. For reference, here are their signatures:
pub trait Index<Index,Result> {
fn index<'a>(&'a self, index: &Index) -> &'a Result;
}
pub trait IndexMut<Index,Result> {
fn index_mut<'a>(&'a mut self, index: &Index) -> &'a mut Result;
}
Closes#6515.
[breaking-change]
This will break code that looks like:
struct Foo {
...
}
mod Foo {
...
}
Change this code to:
struct Foo {
...
}
impl Foo {
...
}
Or rename the module.
Closes#15205.
[breaking-change]
LLVM doesn't handle i1 value in allocas/memory very well and skips a number of optimizations if it hits it. So we have to do the same thing that Clang does, using i1 for SSA values, but storing i8 in memory.
Fixes#15203.