The reasons for doing this are:
* The model on which linked failure is based is inherently complex
* The implementation is also very complex, and there are few remaining who
fully understand the implementation
* There are existing race conditions in the core context switching function of
the scheduler, and possibly others.
* It's unclear whether this model of linked failure maps well to a 1:1 threading
model
Linked failure is often a desired aspect of tasks, but we would like to take a
much more conservative approach in re-implementing linked failure if at all.
Closes#8674Closes#8318Closes#8863
The reasons for doing this are:
* The model on which linked failure is based is inherently complex
* The implementation is also very complex, and there are few remaining who
fully understand the implementation
* There are existing race conditions in the core context switching function of
the scheduler, and possibly others.
* It's unclear whether this model of linked failure maps well to a 1:1 threading
model
Linked failure is often a desired aspect of tasks, but we would like to take a
much more conservative approach in re-implementing linked failure if at all.
Closes#8674Closes#8318Closes#8863
If any of the digits was one past the maximum (e.g. 10**9 for base 10),
then this wasn't detected correctly and so the length of the digit was
one more than expected, causing a very large allocation.
Fixes#10522.
Fixes#10288.
This test was failing periodically on windows and other platforms, and in
debugging the issue locally I've found that the previous test was failing
at the assertion `ns0 <= ns1`. Upon inspecting the values, the two numbers were
very close to one another, but off by a little bit.
I believe that this is because `precise_time_s` goes from `u64` -> `f64` and
then we go again back to `u64` for the assertion. This conversion is a lossy one
that's not always guaranteed to succeed, so instead I've changed the test to
only compare against u64 instances.
This test was failing periodically on windows and other platforms, and in
debugging the issue locally I've found that the previous test was failing
at the assertion `ns0 <= ns1`. Upon inspecting the values, the two numbers were
very close to one another, but off by a little bit.
I believe that this is because `precise_time_s` goes from `u64` -> `f64` and
then we go again back to `u64` for the assertion. This conversion is a lossy one
that's not always guaranteed to succeed, so instead I've changed the test to
only compare against u64 instances.
These two attributes are no longer useful now that Rust has decided to leave
segmented stacks behind. It is assumed that the rust task's stack is always
large enough to make an FFI call (due to the stack being very large).
There's always the case of stack overflow, however, to consider. This does not
change the behavior of stack overflow in Rust. This is still normally triggered
by the __morestack function and aborts the whole process.
C stack overflow will continue to corrupt the stack, however (as it did before
this commit as well). The future improvement of a guard page at the end of every
rust stack is still unimplemented and is intended to be the mechanism through
which we attempt to detect C stack overflow.
Closes#8822Closes#10155
Fully support multiple lifetime parameters on types and elsewhere, removing special treatment for `'self`. I am submitting this a touch early in that I plan to push a new commit with more tests specifically targeting types with multiple lifetime parameters -- but the current code bootstraps and passes `make check`.
Fixes#4846
r? @catamorphism
First contribution; contains struct definitions and some useful traits. Can possibly be improved by removing the dependence on the Clone trait. This is intended to be the beginning of a long-term project.
Previously #9418 fixed utf-8 assertion issue by wcsftime,
but the function didn't work as expected: it follows the locale
set by setlocale(), not the system code page.
This patch fixes it by manual multibyte-to-unicode conversion.
This renames to_str_ascii to as_str_ascii and makes it non-copying,
which is possible now that strings no longer have a hidden extra
byte/null terminator.
Fixes#6120.
This renames the `file` module to `fs` because that more accurately describes
its current purpose (manipulating the filesystem, not just files).
Additionally, this adds an UnstableFileStat structure as a nested structure of
FileStat to signify that the fields should not be depended on. The structure is
currently flagged with #[unstable], but it's unlikely that it has much meaning.
Closes#10241