Fix some misleading target feature aliases
This is the first half of a fix for #100752. It looks like these aliases were added in #78361 and slipped under the radar, as these features are not AVX512. These features _do_ add AVX512 instructions when used _in combination_ with AVX512F, but without AVX512F, these features still provide 128-bit and 256-bit vector instructions. A user might be mislead into thinking these features imply AVX512F (which is true of the actual AVX512 features). This PR allows using the names as defined by LLVM, which matches Intel documentation.
A future PR should change the `std::arch` intrinsics to use these names, and finally remove these aliases from rustc.
r? ```@workingjubilee```
cc ```@Amanieu```
Perform simple scalar replacement of aggregates (SROA) MIR opt
This is a re-open of https://github.com/rust-lang/rust/pull/85796
I copied the debuginfo implementation (first commit) from `@eddyb's` own SROA PR.
This pass replaces plain field accesses by simple locals when possible.
To be eligible, the replaced locals:
- must not be enums or unions;
- must not be used whole;
- must not have their address taken.
The storage and deinit statements are duplicated on each created local.
cc `@tmiasko` who reviewed the former version of this PR.
interpret: support for per-byte provenance
Also factors the provenance map into its own module.
The third commit does the same for the init mask. I can move it in a separate PR if you prefer.
Fixes https://github.com/rust-lang/miri/issues/2181
r? `@oli-obk`
llvm: dwo only emitted when object code emitted
Fixes#103932.
`CompiledModule` should not think a DWARF object was emitted when a bitcode-only compilation has happened, this can confuse archive file creation (which expects to create an archive containing non-existent dwo files).
r? ``````@michaelwoerister``````
Fix Access Violation when using lld & ThinLTO on windows-msvc
Users report an AV at runtime of the compiled binary when using lld and ThinLTO on windows-msvc. The AV occurs when accessing a static value which is defined in one crate but used in another. Based on the disassembly of the cross-crate use, it appears that the use is not correctly linked with the definition and is instead assigned a garbage pointer value.
If we look at the symbol tables for each crates' obj file, we can see what is happening:
*lib.obj*:
```
COFF SYMBOL TABLE
...
00E 00000000 SECT2 notype External | _ZN10reproducer7memrchr2FN17h612b61ca0e168901E
...
```
*bin.obj*:
```
COFF SYMBOL TABLE
...
010 00000000 UNDEF notype External | __imp__ZN10reproducer7memrchr2FN17h612b61ca0e168901E
...
```
The use of the symbol has the "import" style symbol name but the declaration doesn't generate any symbol with the same name. As a result, linking the files generates a warning from lld:
> rust-lld: warning: bin.obj: locally defined symbol imported: reproducer::memrchr::FN::h612b61ca0e168901 (defined in lib.obj) [LNK4217]
and the symbol reference remains undefined at runtime leading to the AV.
To fix this, we just need to detect that we are performing ThinLTO (and thus, static linking) and omit the `dllimport` attribute on the extern item in LLVM IR.
Fixes#81408
`CompiledModule` should not think a DWARF object was emitted when a
bitcode-only compilation has happened, this can confuse archive file
creation (which expects to create an archive containing non-existent dwo
files).
Signed-off-by: David Wood <david.wood@huawei.com>
LLVM 16: Update RISCV data layout
The RISCV data layout was changed in 974e2e690b.
This updates all `riscv64*` targets, though I don't really know what the difference between the `gc` and `imac` ones is.
Passes `x test codegen` at LLVM head and with the currently bundled LLVM version. Without this patch, some tests fail with:
> error: internal compiler error: compiler/rustc_codegen_llvm/src/context.rs:192:13: data-layout for target `riscv64gc-unknown-none-elf`, `e-m:e-p:64:64-i64:64-i128:128-n64-S128`, differs from LLVM target's `riscv64` default layout, `e-m:e-p:64:64-i64:64-i128:128-n32:64-S128
Moved type_array function to rustc_codegen_ssa::BaseTypeMethods trait.
This allows using normal alloca function to create arrays as suggested in
https://github.com/rust-lang/rust/pull/104022.
Signed-off-by: Ayush Singh <ayushsingh1325@gmail.com>
LLVM 16: Switch to using MemoryEffects
This adapts the compiler to the changes required by 304f1d59ca.
AFAICT, `WriteOnly` isn't used by the compiler, all `ReadNone` uses were migrated and the remaining use of `ReadOnly` is only for function parameters.
To simplify the FFI, this PR uses an enum to represent `MemoryEffects` across the FFI boundary, which then gets mapped to the matching static factory method when constructing the attribute.
Fixes#103961.
`@rustbot` label +llvm-main
r? `@nikic`
asm: Work around LLVM bug on AArch64
Upstream issue: https://github.com/llvm/llvm-project/issues/58384
LLVM gets confused if we assign a 32-bit value to a 64-bit register, so pass the 32-bit register name to LLVM in that case.
asm: Match clang behavior for inlateout fixed register operands
We have 2 options for representing LLVM constraints for `inlateout` operands on a fixed register (e.g. `r0`): `={r0},0` or `={r0},{r0}`.
This PR changes the behavior to the latter, which matches the behavior of Clang since https://reviews.llvm.org/D87279.
Users report an AV at runtime of the compiled binary when using lld and
ThinLTO on windows-msvc. The AV occurs when accessing a static value
which is defined in one crate but used in another. Based on the
disassembly of the cross-crate use, it appears that the use is not
correctly linked with the definition and is instead assigned a garbage
pointer value.
If we look at the symbol tables for each crates' obj file, we can see
what is happening:
*lib.obj*:
```
COFF SYMBOL TABLE
...
00E 00000000 SECT2 notype External | _ZN10reproducer7memrchr2FN17h612b61ca0e168901E
...
```
*bin.obj*:
```
COFF SYMBOL TABLE
...
010 00000000 UNDEF notype External | __imp__ZN10reproducer7memrchr2FN17h612b61ca0e168901E
...
```
The use of the symbol has the "import" style symbol name but the
declaration doesn't generate any symbol with the same name. As a result,
linking the files generates a warning from lld:
> rust-lld: warning: bin.obj: locally defined symbol imported: reproducer::memrchr::FN::h612b61ca0e168901 (defined in lib.obj) [LNK4217]
and the symbol reference remains undefined at runtime leading to the AV.
To fix this, we just need to detect that we are performing ThinLTO (and
thus, static linking) and omit the `dllimport` attribute on the extern
item in LLVM IR.
The new implementation doesn't use weak lang items and instead changes
`#[alloc_error_handler]` to an attribute macro just like
`#[global_allocator]`.
The attribute will generate the `__rg_oom` function which is called by
the compiler-generated `__rust_alloc_error_handler`. If no `__rg_oom`
function is defined in any crate then the compiler shim will call
`__rdl_oom` in the alloc crate which will simply panic.
This also fixes link errors with `-C link-dead-code` with
`default_alloc_error_handler`: `__rg_oom` was previously defined in the
alloc crate and would attempt to reference the `oom` lang item, even if
it didn't exist. This worked as long as `__rg_oom` was excluded from
linking since it was not called.
This is a prerequisite for the stabilization of
`default_alloc_error_handler` (#102318).