Deprecate the core::raw / std::raw module
It only contains the `TraitObject` struct which exposes components of wide pointer. Pointer metadata APIs are designed to replace this: https://github.com/rust-lang/rust/issues/81513
Add some #[inline(always)] to arithmetic methods of integers
I tried to add it only to methods which return results of intrinsics and don't have any branching.
Branching could made performance of debug builds (`-Copt-level=0`) worse.
Main goal of changes is allowing wider optimizations in `-Copt-level=1`.
Closes: https://github.com/rust-lang/rust/issues/75598
r? `@nagisa`
No compiler changes as part of this -- just new unstable traits and impls thereof.
The goal here is to add the things that aren't going to break anything, to keep the feature implementation simpler in the next PR.
std: Add a variant of thread locals with const init
This commit adds a variant of the `thread_local!` macro as a new
`thread_local_const_init!` macro which requires that the initialization
expression is constant (e.g. could be stuck into a `const` if so
desired). This form of thread local allows for a more efficient
implementation of `LocalKey::with` both if the value has a destructor
and if it doesn't. If the value doesn't have a destructor then `with`
should desugar to exactly as-if you use `#[thread_local]` given
sufficient inlining.
The purpose of this new form of thread locals is to precisely be
equivalent to `#[thread_local]` on platforms where possible for values
which fit the bill (those without destructors). This should help close
the gap in performance between `thread_local!`, which is safe, relative
to `#[thread_local]`, which is not easy to use in a portable fashion.
This commit adds a variant of the `thread_local!` macro as a new
`thread_local_const_init!` macro which requires that the initialization
expression is constant (e.g. could be stuck into a `const` if so
desired). This form of thread local allows for a more efficient
implementation of `LocalKey::with` both if the value has a destructor
and if it doesn't. If the value doesn't have a destructor then `with`
should desugar to exactly as-if you use `#[thread_local]` given
sufficient inlining.
The purpose of this new form of thread locals is to precisely be
equivalent to `#[thread_local]` on platforms where possible for values
which fit the bill (those without destructors). This should help close
the gap in performance between `thread_local!`, which is safe, relative
to `#[thread_local]`, which is not easy to use in a portable fashion.
Fix join_paths error display.
On unix, the error from `join_paths` looked like this:
```
path segment contains separator `58`
```
This PR changes it to look like this:
```
path segment contains separator `:`
```
Move `std::sys_common::alloc` to new module `std::sys::common`
6b56603e35/library/std/src/sys_common/mod.rs (L7-L13)
It was my impression that the goal for `std::sys` has changed from extracting it into a separate crate to making std work with features. However the fact remains that there is a lot of interdependence between `sys` and `sys_common`, this is because `sys_common` contains two types of code:
- abstractions over the different platform implementations in `std::sys` (for example [`std::sys_common::mutex`](https://github.com/rust-lang/rust/blob/master/library/std/src/sys_common/mutex.rs))
- code shared between platforms (for example [`std::sys_common::alloc`](https://github.com/rust-lang/rust/blob/master/library/std/src/sys_common/alloc.rs))
This PR attempts to address this by adding a new module `common` to `std::sys` which will contain code shared between platforms, `alloc.rs` in this case but more can be moved over in the future.
add lint deref_nullptr detecting when a null ptr is dereferenced
fixes#83856
changelog: add lint that detect code like
```rust
unsafe {
&*core::ptr::null::<i32>()
};
unsafe {
addr_of!(std::ptr::null::<i32>())
};
let x: i32 = unsafe {*core::ptr::null()};
let x: i32 = unsafe {*core::ptr::null_mut()};
unsafe {*(0 as *const i32)};
unsafe {*(core::ptr::null() as *const i32)};
```
```
warning: Dereferencing a null pointer causes undefined behavior
--> src\main.rs:5:26
|
5 | let x: i32 = unsafe {*core::ptr::null()};
| ^^^^^^^^^^^^^^^^^^
| |
| a null pointer is dereferenced
| this code causes undefined behavior when executed
|
= note: `#[warn(deref_nullptr)]` on by default
```
Limitation:
It does not detect code like
```rust
const ZERO: usize = 0;
unsafe {*(ZERO as *const i32)};
```
or code where `0` is not directly a literal
Optimize for the common case where the input write size is less than the
buffer size. This slightly increases the cost for pathological write
patterns that commonly fill the buffer exactly, but if a client is doing
that frequently, they're already paying the cost of frequent flushing,
etc., so the cost is of this optimization to them is relatively small.
We use a Vec as our internal, constant-sized buffer, but the overhead of
using methods like `extend_from_slice` can be enormous, likely because
they don't get inlined, because `Vec` has to repeat bounds checks that
we've already done, and because it makes considerations for things like
reallocating, even though they should never happen.
Ensure that `write` and `write_all` can be inlined and that their
commonly executed fast paths can be as short as possible.
`write_vectored` would likely benefit from the same optimization, but I
omitted it because its implementation is more complex, and I don't have
a benchmark on hand to guide its optimization.
Improve code example for length comparison
Small fix/improvement: it's much safer to check that you're under the length of an array rather than chacking that you're equal to it. It's even more true in case you update the length of the array while iterating.