Primarily this makes the Scheduler and all of its related interfaces public. The
reason for doing this is that currently any extern event loops had no access to
the scheduler at all. This allows third-party event loops to manipulate the
scheduler, along with allowing the uv event loop to live inside of its own
crate.
This drops more of the old C++ runtime to rather be written in rust. A few
features were lost along the way, but hopefully not too many. The main loss is
that there are no longer backtraces associated with allocations (rust doesn't
have a way of acquiring those just yet). Other than that though, I believe that
the rest of the debugging utilities made their way over into rust.
Closes#8704
Some code cleanup, sorting of import blocks
Removed std::unstable::UnsafeArc's use of Either
Added run-fail tests for the new FailWithCause impls
Changed future_result and try to return Result<(), ~Any>.
- Internally, there is an enum of possible fail messages passend around.
- In case of linked failure or a string message, the ~Any gets
lazyly allocated in future_results recv method.
- For that, future result now returns a wrapper around a Port.
- Moved and renamed task::TaskResult into rt::task::UnwindResult
and made it an internal enum.
- Introduced a replacement typedef `type TaskResult = Result<(), ~Any>`.
This drops more of the old C++ runtime to rather be written in rust. A few
features were lost along the way, but hopefully not too many. The main loss is
that there are no longer backtraces associated with allocations (rust doesn't
have a way of acquiring those just yet). Other than that though, I believe that
the rest of the debugging utilities made their way over into rust.
Closes#8704
It's not guaranteed that there will always be an event loop to run, and this
implementation will serve as an incredibly basic one which does not provide any
I/O, but allows the scheduler to still run.
cc #9128
The goal here is to avoid requiring a division or multiplication to compare against the length. The bounds check previously used an incorrect micro-optimization to replace the division by a multiplication, but now neither is necessary *for slices*. Unique/managed vectors will have to do a division to get the length until they are reworked/replaced.
Add a new trait BytesContainer that is implemented for both byte vectors
and strings.
Convert Path::from_vec and ::from_str to one function, Path::new().
Remove all the _str-suffixed mutation methods (push, join, with_*,
set_*) and modify the non-suffixed versions to use BytesContainer.
Remove the old path.
Rename path2 to path.
Update all clients for the new path.
Also make some miscellaneous changes to the Path APIs to help the
adoption process.
This commit fixes all of the fallout of the previous commit which is an attempt
to refine privacy. There were a few unfortunate leaks which now must be plugged,
and the most horrible one is the current `shouldnt_be_public` module now inside
`std::rt`. I think that this either needs a slight reorganization of the
runtime, or otherwise it needs to just wait for the external users of these
modules to get replaced with their `rt` implementations.
Other fixes involve making things pub which should be pub, and otherwise
updating error messages that now reference privacy instead of referencing an
"unresolved name" (yay!).
The root issue is that dlerror isn't reentrant or even thread safe.
The solution implemented here is to make a yielding spin lock over an
AtomicFlag. This is pretty hacky, but the best we can do at this point.
As far as I can tell, it isn't possible to create a global mutex without
having to initialize it in a single threaded context.
The Windows code isn't affected since errno is thread-local on Windows
and it's running in an atomically block to ensure there isn't a green
thread context switch.
Closes#8156
The root issue is that dlerror isn't reentrant or even thread safe.
The Windows code isn't affected since errno is thread-local on Windows
and it's running in an atomically block to ensure there isn't a green
thread context switch.
Closes#8156
It is simply defined as `f64` across every platform right now.
A use case hasn't been presented for a `float` type defined as the
highest precision floating point type implemented in hardware on the
platform. Performance-wise, using the smallest precision correct for the
use case greatly saves on cache space and allows for fitting more
numbers into SSE/AVX registers.
If there was a use case, this could be implemented as simply a type
alias or a struct thanks to `#[cfg(...)]`.
Closes#6592
The mailing list thread, for reference:
https://mail.mozilla.org/pipermail/rust-dev/2013-July/004632.html