Compile-fail tests for syntax extensions belong in this suite which has correct
dependencies on all artifacts rather than just the target artifacts.
Closes#13818
Similar to my recent changes to ~[T]/&[T], these changes remove the vstore abstraction and represent str types as ~(str) and &(str). The Option<uint> in ty_str is the length of the string, None if the string is dynamically sized.
moves computation. ExprUseVisitor is a visitor that walks the AST for a
function and calls a delegate to inform it where borrows, copies, and moves
occur.
In this patch, I rewrite the gather_loans visitor to use ExprUseVisitor, but in
future patches, I think we could rewrite regionck, check_loans, and possibly
other passes to use it as well. This would refactor the repeated code between
those places that tries to determine where copies/moves/etc occur.
Specifically, the method parameter cardinality mismatch or missing
method error message span now gets method itself exactly. It was the
whole expression.
Closes#9390Closes#13684Closes#13709
This patch removes the special auto-rooting for `@` from the borrow checker. With `@` moving into a library, it doesn't make sense to keep this code around anymore. It also simplifies `trans` by removing root checking from there
@nikomatsakis
Closes: #11586
Specifically, the method parameter cardinality mismatch or missing
method error message span now gets method itself exactly. It was the
whole expression.
Closes#9390Closes#13684Closes#13709
This allows the use of syntax extensions when cross-compiling (fixing #12102). It does this by encoding the target triple in the crate metadata and checking it when searching for files. Currently the crate triple must match the host triple when there is a macro_registrar_fn, it must match the target triple when linking, and can match either when only macro_rules! macros are used.
due to carelessness, this is pretty much a duplicate of https://github.com/mozilla/rust/pull/13450.
This adds the target triple to the crate metadata.
When searching for a crate the phase (link, syntax) is taken into account.
During link phase only crates matching the target triple are considered.
During syntax phase, either the target or host triple will be accepted, unless
the crate defines a macro_registrar, in which case only the host triple will
match.
This alters the borrow checker's requirements on invoking closures from
requiring an immutable borrow to requiring a unique immutable borrow. This means
that it is illegal to invoke a closure through a `&` pointer because there is no
guarantee that is not aliased. This does not mean that a closure is required to
be in a mutable location, but rather a location which can be proven to be
unique (often through a mutable pointer).
For example, the following code is unsound and is no longer allowed:
type Fn<'a> = ||:'a;
fn call(f: |Fn|) {
f(|| {
f(|| {})
});
}
fn main() {
call(|a| {
a();
});
}
There is no replacement for this pattern. For all closures which are stored in
structures, it was previously allowed to invoke the closure through `&self` but
it now requires invocation through `&mut self`.
The standard library has a good number of violations of this new rule, but the
fixes will be separated into multiple breaking change commits.
Closes#12224
This alters the borrow checker's requirements on invoking closures from
requiring an immutable borrow to requiring a unique immutable borrow. This means
that it is illegal to invoke a closure through a `&` pointer because there is no
guarantee that is not aliased. This does not mean that a closure is required to
be in a mutable location, but rather a location which can be proven to be
unique (often through a mutable pointer).
For example, the following code is unsound and is no longer allowed:
type Fn<'a> = ||:'a;
fn call(f: |Fn|) {
f(|| {
f(|| {})
});
}
fn main() {
call(|a| {
a();
});
}
There is no replacement for this pattern. For all closures which are stored in
structures, it was previously allowed to invoke the closure through `&self` but
it now requires invocation through `&mut self`.
The standard library has a good number of violations of this new rule, but the
fixes will be separated into multiple breaking change commits.
Closes#12224
[breaking-change]
When reporting "consider removing this semicolon" hint message, the
offending semicolon may come from macro call site instead of macro
itself. Using the more appropriate span makes the hint more helpful.
Closes#13428.
This gives a better NOTE error message when a privacy error is encountered with
a static method. Previously no note was emitted (due to lack of support), but
now a note is emitted indicating that the struct/enum itself is private.
Closes#13641
This gives a better NOTE error message when a privacy error is encountered with
a static method. Previously no note was emitted (due to lack of support), but
now a note is emitted indicating that the struct/enum itself is private.
Closes#13641
When reporting "consider removing this semicolon" hint message, the
offending semicolon may come from macro call site instead of macro
itself. Using the more appropriate span makes the hint more helpful.
Closes#13428.
This commit changes the way move errors are reported when some value is
captured by a PatIdent. First, we collect all of the "cannot move out
of" errors before reporting them, and those errors with the same "move
source" are reported together. If the move is caused by a PatIdent (that
binds by value), we add a note indicating where it is and suggest the
user to put `ref` if they don't want the value to move. This makes the
"cannot move out of" error in match expression nicer (though the extra
note may not feel that helpful in other places :P). For example, with
the following code snippet,
```rust
enum Foo {
Foo1(~u32, ~u32),
Foo2(~u32),
Foo3,
}
fn main() {
let f = &Foo1(~1u32, ~2u32);
match *f {
Foo1(num1, num2) => (),
Foo2(num) => (),
Foo3 => ()
}
}
```
Errors before the change:
```rust
test.rs:10:9: 10:25 error: cannot move out of dereference of `&`-pointer
test.rs:10 Foo1(num1, num2) => (),
^~~~~~~~~~~~~~~~
test.rs:10:9: 10:25 error: cannot move out of dereference of `&`-pointer
test.rs:10 Foo1(num1, num2) => (),
^~~~~~~~~~~~~~~~
test.rs:11:9: 11:18 error: cannot move out of dereference of `&`-pointer
test.rs:11 Foo2(num) => (),
^~~~~~~~~
```
After:
```rust
test.rs:9:11: 9:13 error: cannot move out of dereference of `&`-pointer
test.rs:9 match *f {
^~
test.rs:10:14: 10:18 note: attempting to move value to here (to prevent the move, use `ref num1` or `ref mut num1` to capture value by reference)
test.rs:10 Foo1(num1, num2) => (),
^~~~
test.rs:10:20: 10:24 note: and here (use `ref num2` or `ref mut num2`)
test.rs:10 Foo1(num1, num2) => (),
^~~~
test.rs:11:14: 11:17 note: and here (use `ref num` or `ref mut num`)
test.rs:11 Foo2(num) => (),
^~~
```
Close#8064
This removes the `priv` keyword from the language and removes private enum
variants as a result. The remaining use cases of private enum variants were all
updated to be a struct with one private field that is a private enum.
RFC: 0006-remove-priv
Closes#13535
This includes a change to the way lifetime names are generated. Say we
figure that `[#0, 'a, 'b]` have to be the same lifetimes, then instead
of just generating a new lifetime `'c` like before to replace them, we
would reuse `'a`. This is done so that when the lifetime name comes
from an impl, we don't give something that's completely off, and we
don't have to do much work to figure out where the name came from. For
example, for the following code snippet:
```rust
struct Baz<'x> {
bar: &'x int
}
impl<'x> Baz<'x> {
fn baz1(&self) -> &int {
self.bar
}
}
```
`[#1, 'x]` (where `#1` is BrAnon(1) and refers to lifetime of `&int`)
have to be marked the same lifetime. With the old method, we would
generate a new lifetime `'a` and suggest `fn baz1(&self) -> &'a int`
or `fn baz1<'a>(&self) -> &'a int`, both of which are wrong.
A mismatched type with more type parameters than the expected one causes
`typeck` looking up out of the bound of type parameter vector, which
leads to ICE.
Closes#13466
A mismatched type with more type parameters than the expected one causes
`typeck` looking up out of the bound of type parameter vector, which
leads to ICE.
Closes#13466
Previously, a private use statement would shadow a public use statement, all of
a sudden publicly exporting the privately used item. The correct behavior here
is to only shadow the use for the module in question, but for now it just
reverts the entire name to private so the pub use doesn't have much effect.
The behavior isn't exactly what we want, but this no longer has backwards
compatibility hazards.
Previously resolve was checking the "import resolution" for whether an import
had succeeded or not, but this was the same structure filled in by a previous
import if a name is shadowed. Instead, this alters resolve to consult the local
resolve state (as opposed to the shared one) to test whether an import succeeded
or not.
Closes#13404
Resolve is currently erroneously allowing imports through private `use`
statements in some circumstances, even across module boundaries. For example,
this code compiles successfully today:
use std::c_str;
mod test {
use c_str::CString;
}
This should not be allowed because it was explicitly decided that private `use`
statements are purely bringing local names into scope, they are not
participating further in name resolution.
As a consequence of this patch, this code, while valid today, is now invalid:
mod test {
use std::c_str;
unsafe fn foo() {
::test::c_str::CString::new(0 as *u8, false);
}
}
While plausibly acceptable, I found it to be more consistent if private imports
were only considered candidates to resolve the first component in a path, and no
others.
Closes#12612
I think that the test case from this issue has become out of date with resolve
changes in the past 9 months, and it's not entirely clear to me what the
original bug was.
Regardless, it seems like tricky resolve behavior, so tests were added to make
sure things resolved correctly and warnings were correctly reported.
Closes#7663
This commit changes the way move errors are reported when some value is
captured by a PatIdent. First, we collect all of the "cannot move out
of" errors before reporting them, and those errors with the same "move
source" are reported together. If the move is caused by a PatIdent (that
binds by value), we add a note indicating where it is and suggest the
user to put `ref` if they don't want the value to move. This makes the
"cannot move out of" error in match expression nicer (though the extra
note may not feel that helpful in other places :P). For example, with
the following code snippet,
```rust
enum Foo {
Foo1(~u32, ~u32),
Foo2(~u32),
Foo3,
}
fn main() {
let f = &Foo1(~1u32, ~2u32);
match *f {
Foo1(num1, num2) => (),
Foo2(num) => (),
Foo3 => ()
}
}
```
Errors before the change:
```rust
test.rs:10:9: 10:25 error: cannot move out of dereference of `&`-pointer
test.rs:10 Foo1(num1, num2) => (),
^~~~~~~~~~~~~~~~
test.rs:10:9: 10:25 error: cannot move out of dereference of `&`-pointer
test.rs:10 Foo1(num1, num2) => (),
^~~~~~~~~~~~~~~~
test.rs:11:9: 11:18 error: cannot move out of dereference of `&`-pointer
test.rs:11 Foo2(num) => (),
^~~~~~~~~
```
After:
```rust
test.rs:9:11: 9:13 error: cannot move out of dereference of `&`-pointer
test.rs:9 match *f {
^~
test.rs:10:14: 10:18 note: attempting to move value to here (to prevent the move, you can use `ref num1` to capture value by reference)
test.rs:10 Foo1(num1, num2) => (),
^~~~
test.rs:10:20: 10:24 note: and here (use `ref num2`)
test.rs:10 Foo1(num1, num2) => (),
^~~~
test.rs:11:14: 11:17 note: and here (use `ref num`)
test.rs:11 Foo2(num) => (),
^~~
```
Close#8064
This fixes the categorization of the upvars of procs (represented internally
as once fns) to consider usage to require a loan. In doing so, upvars are no
longer allowed to be moved out of repeatedly in loops and such.
Closes#10398Closes#12041Closes#12127
In the error message for when a private field is used, include the name of the struct, or if it's a struct-like enum variant, the names of the variant and the enum.
This fixes#13341.
In summary these are some example transitions this change makes:
'a || => ||: 'a
proc:Send() => proc():Send
The intended syntax for closures is to put the lifetime bound not at the front
but rather in the list of bounds. Currently there is no official support in the
AST for bounds that are not 'static, so this case is currently specially handled
in the parser to desugar to what the AST is expecting. Additionally, this moves
the bounds on procedures to the correct position, which is after the argument
list.
The current grammar for closures and procedures is:
procedure := 'proc' [ '<' lifetime-list '>' ] '(' arg-list ')'
[ ':' bound-list ] [ '->' type ]
closure := [ 'unsafe' ] ['<' lifetime-list '>' ] '|' arg-list '|'
[ ':' bound-list ] [ '->' type ]
lifetime-list := lifetime | lifetime ',' lifetime-list
arg-list := ident ':' type | ident ':' type ',' arg-list
bound-list := bound | bound '+' bound-list
bound := path | lifetime
This does not currently handle the << ambiguity in `Option<<'a>||>`, I am
deferring that to a later patch. Additionally, this removes the support for the
obsolete syntaxes of ~fn and &fn.
Closes#10553Closes#10767Closes#11209Closes#11210Closes#11211
This can be a frustrating error message, ideally we should print the signature mismatch, but hinting that it's a trait incompatibility helps tracking root cause. Also beefed up the testcases for this.
Ideally we would print the signature mismatch in the error helper?
rustc: move the check_loop pass earlier.
This pass is purely AST based, and by running it earlier we emit more
useful error messages, e.g. type inference fails in the case of
`let r = break;` with few constraints on `r`, but it's more useful to be told that
the `break` is outside the loop (rather than a type error) when it is.
Closes#13292.
This pass is purely AST based, and by running it earlier we emit more
useful error messages, e.g. type inference fails in the case of `let r =
break;` with few constraints on `r`, but its more useful to be told that
the `break` is outside a loop (rather than a type error) when it is.
Closes#13292.
rustc: feature-gate `concat_idents!`.
concat_idents! is not as useful as it could be, due to macros only being
allowed in limited places, and hygiene, so lets feature gate it until we
make a decision about it.
cc #13294
concat_idents! is not as useful as it could be, due to macros only being
allowed in limited places, and hygiene, so lets feature gate it until we
make a decision about it.
cc #13294
This commit tightens up the restriction on types used to index slices to require
exactly `uint` indices. Previously any integral type was accepted, but this
leads to a few subtle problems:
* 64-bit indices don't make much sense on 32-bit systems
* Signed indices for slices used as negative indexing isn't implemented
This was discussed at the recent work week, and also has some discussion on
issue #10453.
Closes#10453
This is a continuation of the work done in #13184 to make struct fields private
by default. This commit finishes RFC 4 by making all tuple structs have private
fields by default. Note that enum variants are not affected.
A tuple struct having a private field means that it cannot be matched on in a
pattern match (both refutable and irrefutable), and it also cannot have a value
specified to be constructed. Similarly to private fields, switching the type of
a private field in a tuple struct should be able to be done in a backwards
compatible way.
The one snag that I ran into which wasn't mentioned in the RFC is that this
commit also forbids taking the value of a tuple struct constructor. For example,
this code now fails to compile:
mod a {
pub struct A(int);
}
let a: fn(int) -> a::A = a::A; //~ ERROR: first field is private
Although no fields are bound in this example, it exposes implementation details
through the type itself. For this reason, taking the value of a struct
constructor with private fields is forbidden (outside the containing module).
RFC: 0004-private-fields
This removes the `attr` matcher and adds a `meta` matcher. The previous `attr`
matcher is now ambiguous because it doesn't disambiguate whether it means inner
attribute or outer attribute.
The new behavior can still be achieved by taking an argument of the form
`#[$foo:meta]` (the brackets are part of the macro pattern).
Closes#13067
Summary:
So far, we've used the term POD "Plain Old Data" to refer to types that
can be safely copied. However, this term is not consistent with the
other built-in bounds that use verbs instead. This patch renames the Pod
kind into Copy.
RFC: 0003-opt-in-builtin-traits
Test Plan: make check
Reviewers: cmr
Differential Revision: http://phabricator.octayn.net/D3
The previous syntax was `Foo:Bound<trait-parameters>`, but this is a little
ambiguous because it was being parsed as `Foo: (Bound<trait-parameters)` rather
than `Foo: (Bound) <trait-parameters>`
This commit changes the syntax to `Foo<trait-parameters>: Bound` in order to be
clear where the trait parameters are going.
Closes#9265
The previous syntax was `Foo:Bound<trait-parameters>`, but this is a little
ambiguous because it was being parsed as `Foo: (Bound<trait-parameters)` rather
than `Foo: (Bound) <trait-parameters>`
This commit changes the syntax to `Foo<trait-parameters>: Bound` in order to be
clear where the trait parameters are going.
Closes#9265
It was possible to borrow unsafe static items in static initializers.
This patch implements a small `Visitor` that walks static initializer's
expressions and checks borrows aliasability.
Fixes#13005
cc @nikomatsakis r?
* Remove clone-ability from all primitives. All shared state will now come
from the usage of the primitives being shared, not the primitives being
inherently shareable. This allows for fewer allocations for stack-allocated
primitives.
* Add `Mutex<T>` and `RWLock<T>` which are stack-allocated primitives for purely
wrapping a piece of data
* Remove `RWArc<T>` in favor of `Arc<RWLock<T>>`
* Remove `MutexArc<T>` in favor of `Arc<Mutex<T>>`
* Shuffle around where things are located
* The `arc` module now only contains `Arc`
* A new `lock` module contains `Mutex`, `RWLock`, and `Barrier`
* A new `raw` module contains the primitive implementations of `Semaphore`,
`Mutex`, and `RWLock`
* The Deref/DerefMut trait was implemented where appropriate
* `CowArc` was removed, the functionality is now part of `Arc` and is tagged
with `#[experimental]`.
* The crate now has #[deny(missing_doc)]
* `Arc` now supports weak pointers
This is not a large-scale rewrite of the functionality contained within the
`sync` crate, but rather a shuffling of who does what an a thinner hierarchy of
ownership to allow for better composability.
Summary:
It was possible to borrow unsafe static items in static initializers.
This patch implements a small `Visitor` that walks static initializer's
expressions and checks borrows aliasability.
Fixes#13005
Test Plan: make check
Differential Revision: http://phabricator.octayn.net/D2
syntax: allow `trace_macros!` and `log_syntax!` in item position.
Previously
trace_macros!(true)
fn main() {}
would complain about `trace_macros` being an expression macro in item
position. This is a pointless limitation, because the macro is purely
compile-time, with no runtime effect. (And similarly for log_syntax.)
This also changes the behaviour of `trace_macros!` very slightly, it
used to be equivalent to
macro_rules! trace_macros {
(true $($_x: tt)*) => { true };
(false $($_x: tt)*) => { false }
}
I.e. you could invoke it with arbitrary trailing arguments, which were
ignored. It is changed to accept only exactly `true` or `false` (with no
trailing arguments) and expands to `()`.
Previously
trace_macros!(true)
fn main() {}
would complain about `trace_macros` being an expression macro in item
position. This is a pointless limitation, because the macro is purely
compile-time, with no runtime effect. (And similarly for log_syntax.)
This also changes the behaviour of `trace_macros!` very slightly, it
used to be equivalent to
macro_rules! trace_macros {
(true $($_x: tt)*) => { true };
(false $($_x: tt)*) => { false }
}
I.e. you could invoke it with arbitrary trailing arguments, which were
ignored. It is changed to accept only exactly `true` or `false` (with no
trailing arguments) and expands to `()`.
`Share` implies that all *reachable* content is *threadsafe*.
Threadsafe is defined as "exposing no operation that permits a data race if multiple threads have access to a &T pointer simultaneously". (NB: the type system should guarantee that if you have access to memory via a &T pointer, the only other way to gain access to that memory is through another &T pointer)...
Fixes#11781
cc #12577
What this PR will do
================
- [x] Add Share kind and
- [x] Replace usages of Freeze with Share in bounds.
- [x] Add Unsafe<T> #12577
- [x] Forbid taking the address of a immutable static item with `Unsafe<T>` interior
What's left to do in a separate PR (after the snapshot)?
===========================================
- Remove `Freeze` completely
This is adequate because when a function has a type that isn't caught here,
that is, it has a single argument, but it *isn't* `&mut BenchHarness`, it
errors later on with:
error: mismatched types: expected `fn(&mut test::BenchHarness)` but found
`fn(int)` (expected &-ptr but found int)
which I consider acceptable.
Closes#12997
This PR enables the use of mutable slices in *mutable* static items. The work was started by @xales and I added a follow-up commit that moves the *immutable* restriction to the recently added `check_static`
Closes#11411
its a common (yet easily fixable) error to just forget parens at the end of getter-like methods without any arguments.
The current error message for that case asks for an anonymous function, this patch adds a note asking for either an anonymous function, or for trailing parens.
This is my first contribution! do i need to do anything else?
This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:
* The crate map has always been a bit of a code smell among rust programs. It
has difficulty being loaded on almost all platforms, and it's used almost
exclusively for logging and only logging. Removing the crate map is one of the
end goals of this movement.
* The compiler has a fair bit of special support for logging. It has the
__log_level() expression as well as generating a global word per module
specifying the log level. This is unfairly favoring the built-in logging
system, and is much better done purely in libraries instead of the compiler
itself.
* Initialization of logging is much easier to do if there is no reliance on a
magical crate map being available to set module log levels.
* If the logging library can be written outside of the standard library, there's
no reason that it shouldn't be. It's likely that we're not going to build the
highest quality logging library of all time, so third-party libraries should
be able to provide just as high-quality logging systems as the default one
provided in the rust distribution.
With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:
* The core change of this migration is that there is no longer a physical
log-level per module. This concept is still emulated (it is quite useful), but
there is now only a global log level, not a local one. This global log level
is a reflection of the maximum of all log levels specified. The previously
generated logging code looked like:
if specified_level <= __module_log_level() {
println!(...)
}
The newly generated code looks like:
if specified_level <= ::log::LOG_LEVEL {
if ::log::module_enabled(module_path!()) {
println!(...)
}
}
Notably, the first layer of checking is still intended to be "super fast" in
that it's just a load of a global word and a compare. The second layer of
checking is executed to determine if the current module does indeed have
logging turned on.
This means that if any module has a debug log level turned on, all modules
with debug log levels get a little bit slower (they all do more expensive
dynamic checks to determine if they're turned on or not).
Semantically, this migration brings no change in this respect, but
runtime-wise, this will have a perf impact on some code.
* A `RUST_LOG=::help` directive will no longer print out a list of all modules
that can be logged. This is because the crate map will no longer specify the
log levels of all modules, so the list of modules is not known. Additionally,
warnings can no longer be provided if a malformed logging directive was
supplied.
The new "hello world" for logging looks like:
#[phase(syntax, link)]
extern crate log;
fn main() {
debug!("Hello, world!");
}
This commit shreds all remnants of libextra from the compiler and standard
distribution. Two modules, c_vec/tempfile, were moved into libstd after some
cleanup, and the other modules were moved to separate crates as seen fit.
Closes#8784Closes#12413Closes#12576
lint: add lint for use of a `~[T]`.
This is useless at the moment (since pretty much every crate uses
`~[]`), but should help avoid regressions once completely removed from a
crate.
## read+write modifier '+'
This small sugar was left out in the original implementation (#5359).
When an output operand with the '+' modifier is encountered, we store the index of that operand alongside the expression to create and append an input operand later. The following lines are equivalent:
```
asm!("" : "+m"(expr));
asm!("" : "=m"(expr) : "0"(expr));
```
## misplaced options and clobbers give a warning
It's really annoying when a small typo might change behavior without any warning.
```
asm!("mov $1, $0" : "=r"(x) : "r"(8u) : "cc" , "volatile");
//~^ WARNING expected a clobber, but found an option
```
## liveness
Fixed incorrect order of propagation.
Sometimes it caused spurious warnings in code: `warning: value assigned to `i` is never read, #[warn(dead_assignment)] on by default`
~~Note: Rebased on top of another PR. (uses other changes)~~
* [x] Implement read+write
* [x] Warn about misplaced options
* [x] Fix liveness (`dead_assignment` lint)
* [x] Add all tests
For the following code snippet:
```rust
struct Foo { bar: int }
fn foo1(x: &Foo) -> &int {
&x.bar
}
```
This PR generates the following error message:
```rust
test.rs:2:1: 4:2 note: consider using an explicit lifetime parameter as shown: fn foo1<'a>(x: &'a Foo) -> &'a int
test.rs:2 fn foo1(x: &Foo) -> &int {
test.rs:3 &x.bar
test.rs:4 }
test.rs:3:5: 3:11 error: cannot infer an appropriate lifetime for borrow expression due to conflicting requirements
test.rs:3 &x.bar
^~~~~~
```
Currently it does not support methods.
The `~str` type is not long for this world as it will be superseded by the
soon-to-come DST changes for the language. The new type will be
`~Str`, and matching over the allocation will no longer be supported.
Matching on `&str` will continue to work, in both a pre and post DST world.
Some types of error are caused by missing lifetime parameter on function
or method declaration. In such cases, this commit generates some
suggestion about what the function declaration could be. This does not
support method declaration yet.
This is needed to make progress on #10296 as the default bounds will no longer
include Send. I believe that this was the originally intended syntax for procs,
and it just hasn't been necessary up until now.
This is needed to make progress on #10296 as the default bounds will no longer
include Send. I believe that this was the originally intended syntax for procs,
and it just hasn't been necessary up until now.
This functionality is not super-core and so doesn't need to be included
in std. It's possible that std may need rand (it does a little bit now,
for io::test) in which case the functionality required could be moved to
a secret hidden module and reexposed by librand.
Unfortunately, using #[deprecated] here is hard: there's too much to
mock to make it feasible, since we have to ensure that programs still
typecheck to reach the linting phase.
It is often convenient to have forms of weak linkage or other various types of
linkage. Sadly, just using these flavors of linkage are not compatible with
Rust's typesystem and how it considers some pointers to be non-null.
As a compromise, this commit adds support for weak linkage to external symbols,
but it requires that this is only placed on extern statics of type `*T`.
Codegen-wise, we get translations like:
```rust
// rust code
extern {
#[linkage = "extern_weak"]
static foo: *i32;
}
// generated IR
@foo = extern_weak global i32
@_some_internal_symbol = internal global *i32 @foo
```
All references to the rust value of `foo` then reference `_some_internal_symbol`
instead of the symbol `_foo` itself. This allows us to guarantee that the
address of `foo` will never be null while the value may sometimes be null.
An example was implemented in `std::rt::thread` to determine if
`__pthread_get_minstack()` is available at runtime, and a test is checked in to
use it for a static value as well. Function pointers a little odd because you
still need to transmute the pointer value to a function pointer, but it's
thankfully better than not having this capability at all.
Thanks to @bnoordhuis for the original patch, most of this work is still his!
It is often convenient to have forms of weak linkage or other various types of
linkage. Sadly, just using these flavors of linkage are not compatible with
Rust's typesystem and how it considers some pointers to be non-null.
As a compromise, this commit adds support for weak linkage to external symbols,
but it requires that this is only placed on extern statics of type `*T`.
Codegen-wise, we get translations like:
// rust code
extern {
#[linkage = "extern_weak"]
static foo: *i32;
}
// generated IR
@foo = extern_weak global i32
@_some_internal_symbol = internal global *i32 @foo
All references to the rust value of `foo` then reference `_some_internal_symbol`
instead of the symbol `_foo` itself. This allows us to guarantee that the
address of `foo` will never be null while the value may sometimes be null.
An example was implemented in `std::rt::thread` to determine if
`__pthread_get_minstack()` is available at runtime, and a test is checked in to
use it for a static value as well. Function pointers a little odd because you
still need to transmute the pointer value to a function pointer, but it's
thankfully better than not having this capability at all.
Closes#1433. Implemented after suggestion by @cmr in #12323
This is slightly less flexible than the implementation in #12323 (binary and octal floats aren't supported, nor are underscores in the literal), but is cleaner in that it doesn't modify the core grammar, or require odd syntax for the number itself. The missing features could be added back with relatively little effort (the main awkwardness is parsing the string. Is there a good approach for this in the stdlib currently?)
- Repurposes `MoveData.assignee_ids` to mean only `=` but not `+=`, so
that borrowck effectively classifies all expressions into assignees,
uses or both.
- Removes two `span_err` in liveness analysis, which are now borrowck's
responsibilities.
Closes#12527.
* `Ord` inherits from `Eq`
* `TotalOrd` inherits from `TotalEq`
* `TotalOrd` inherits from `Ord`
* `TotalEq` inherits from `Eq`
This is a partial implementation of #12517.
This new SVH is used to uniquely identify all crates as a snapshot in time of
their ABI/API/publicly reachable state. This current calculation is just a hash
of the entire crate's AST. This is obviously incorrect, but it is currently the
reality for today.
This change threads through the new Svh structure which originates from crate
dependencies. The concept of crate id hash is preserved to provide efficient
matching on filenames for crate loading. The inspected hash once crate metadata
is opened has been changed to use the new Svh.
The goal of this hash is to identify when upstream crates have changed but
downstream crates have not been recompiled. This will prevent the def-id drift
problem where upstream crates were recompiled, thereby changing their metadata,
but downstream crates were not recompiled.
In the future this hash can be expanded to exclude contents of the AST like doc
comments, but limitations in the compiler prevent this change from being made at
this time.
Closes#10207
These are types that are in exported type signatures, but are not
exported themselves, e.g.
struct Foo { ... }
pub fn bar() -> Foo { ... }
will warn about the Foo.
Such types are not listed in documentation, and cannot be named outside
the crate in which they are declared, which is very user-unfriendly.
cc #10573
- For each *mutable* static item, check that the **type**:
- cannot own any value whose type has a dtor
- cannot own any values whose type is an owned pointer
- For each *immutable* static item, check that the **value**:
- does not contain any ~ or box expressions
(including ~[1, 2, 3] sort of things)
- does not contain a struct literal or call to an enum
variant / struct constructor where
- the type of the struct/enum has a dtor
This updates a number of ignore-test tests, and removes a few completely
outdated tests due to the feature being tested no longer being supported.
This brings a number of bench/shootout tests up to date so they're compiling
again. I make no claims to the performance of these benchmarks, it's just nice
to not have bitrotted code.
Closes#2604Closes#9407
In its first pass, namely gather_loans, the borrow checker tracks the
initialization sites among other things it does. It does so for let
bindings with initializers but not for bindings in match arms, which are
effectively also assignments. This patch does that for borrow checker.
Closes#12452.
* compile-fail/vec-add.rs is obsolete, there are no mutable
vectors any more, #2711 is closed
* compile-fail/issue-1451.rs is obsolete, there are no more
structural records, #1451 is closed
* compile-fail/issue-2074.rs is obsolete, an up to date test
is in run-pass/nested-enum-same-names.rs, #2074 is closed
* compile-fail/omitted-arg-wrong-types.rs is obsolete, #2093
is closed
This commit removes deriving(ToStr) in favor of deriving(Show), migrating all impls of ToStr to fmt::Show.
Most of the details can be found in the first commit message.
Closes#12477
This commit changes the ToStr trait to:
impl<T: fmt::Show> ToStr for T {
fn to_str(&self) -> ~str { format!("{}", *self) }
}
The ToStr trait has been on the chopping block for quite awhile now, and this is
the final nail in its coffin. The trait and the corresponding method are not
being removed as part of this commit, but rather any implementations of the
`ToStr` trait are being forbidden because of the generic impl. The new way to
get the `to_str()` method to work is to implement `fmt::Show`.
Formatting into a `&mut Writer` (as `format!` does) is much more efficient than
`ToStr` when building up large strings. The `ToStr` trait forces many
intermediate allocations to be made while the `fmt::Show` trait allows
incremental buildup in the same heap allocated buffer. Additionally, the
`fmt::Show` trait is much more extensible in terms of interoperation with other
`Writer` instances and in more situations. By design the `ToStr` trait requires
at least one allocation whereas the `fmt::Show` trait does not require any
allocations.
Closes#8242Closes#9806
Makes labelled loops hygiene by performing renaming of the labels
defined in e.g. `'x: loop { ... }` and then used in break and continue
statements within loop body so that they act hygienically when used with
macros.
Closes#12262.
With the stability attributes we can put public-but unstable modules next to others, so this moves `intrinsics` and `raw` out of the `unstable` module (and marks both as `#[experimental]`).
These two containers are indeed collections, so their place is in
libcollections, not in libstd. There will always be a hash map as part of the
standard distribution of Rust, but by moving it out of the standard library it
makes libstd that much more portable to more platforms and environments.
This conveniently also removes the stuttering of 'std::hashmap::HashMap',
although 'collections::HashMap' is only one character shorter.
This PR merges `IterBytes` and `Hash` into a trait that allows for generic non-stream-based hashing. It makes use of @eddyb's default type parameter support in order to have a similar usage to the old `Hash` framework.
Fixes#8038.
Todo:
- [x] Better documentation
- [ ] Benchmark
- [ ] Parameterize `HashMap` on a `Hasher`.
Fixes#12350.
Parentheses around assignment statements such as
```rust
let mut a = (0);
a = (1);
a += (2);
```
are not necessary and therefore an unnecessary_parens warning is raised when
statements like this occur.
NOTE: In `let` declarations this does not work as intended. Is it possible that they do not count as assignment expressions (`ExprAssign`)? (edit: this is fixed by now)
Furthermore, there are some cases that I fixed in the rest of the code, where parentheses could potentially enhance readability. Compare these lines:
```rust
a = b == c;
a = (b == c);
```
Thus, after having worked on this I'm not entirely sure, whether we should go through with this patch or not. Probably a matter of debate. ;)
Not all of those messages are covered by tests. I am not sure how to trigger them and where to put those tests.
Also some message patterns in the existing tests are not complete.
For example, i find `error: mismatched types: expected "i32" but found "char" (expected i32 but found char)` a bit repetitive, but as i can see there is no test covering that.
Closes#12366.
Parentheses around assignment statements such as
let mut a = (0);
a = (1);
a += (2);
are not necessary and therefore an unnecessary_parens warning is raised when
statements like this occur.
The warning mechanism was refactored along the way to allow for code reuse
between the routines for checking expressions and statements.
Code had to be adopted throughout the compiler and standard libraries to comply
with this modification of the lint.
Travis CI provides an easy-to-use continuous integration infrastructure for
github repos to use. Travis will automatically test all PRs which are opened
against the rust repository, informing PR owners of the test results.
I believe that this will be a very convenient piece of infrastructure as we'll
be able to reduce the load on bors quite a bit. In theory all PRs opened have
had the full test suite run against them, but unfortunately this is rarely the
case (I'm a prime suspect). Travis will be able to provide easy and relatively
quick (~30min) feedback for PRs. By ensuring fewer failures on bors, we can
hopefully feed more successful jobs to bors.
Overall, I expect this to be very helpful for new contributors as well as
regular contributors as it's another layer of tests being run which will
hopefully catch things sooner. One of the most convenient parts about using
Travis is that there's very little burden in terms of maintenance, and if things
go wrong we can easily turn travis completely off.
Note that this is *not* the metric by which a PR will be merged with. Using
travis will purely be another source for running tests, we will continue to gate
all PRs on bors.
This patch merges IterBytes and Hash traits, which clears up the
confusion of using `#[deriving(IterBytes)]` to support hashing.
Instead, it now is much easier to use the new `#[deriving(Hash)]`
for making a type hashable with a stream hash.
Furthermore, it supports custom non-stream-based hashers, such as
if a value's hash was cached in a database.
This does not yet replace the old IterBytes-hash with this new
version.
Previously an `unsafe` block created by the compiler (like those in the
formatting macros) would be "ignored" if surrounded by `unsafe`, that
is, the internal unsafety would be being legitimised by the external
block:
unsafe { println!("...") } =(expansion)=> unsafe { ... unsafe { ... } }
And the code in the inner block would be using the outer block, making
it considered used (and the inner one considered unused).
This patch forces the compiler to create a new unsafe context for
compiler generated blocks, so that their internal unsafety doesn't
escape to external blocks.
Fixes#12418.
Added allow(non_camel_case_types) to librustc where necesary
Tried to fix problems with non_camel_case_types outside rustc
fixed failing tests
Docs updated
Moved #[allow(non_camel_case_types)] a level higher.
markdown.rs reverted
Fixed timer that was failing tests
Fixed another timer
Travis CI provides an easy-to-use continuous integration infrastructure for
github repos to use. Travis will automatically test all PRs which are opened
against the rust repository, informing PR owners of the test results.
I believe that this will be a very convenient piece of infrastructure as we'll
be able to reduce the load on bors quite a bit. In theory all PRs opened have
had the full test suite run against them, but unfortunately this is rarely the
case (I'm a prime suspect). Travis will be able to provide easy and relatively
quick (~30min) feedback for PRs. By ensuring fewer failures on bors, we can
hopefully feed more successful jobs to bors.
Overall, I expect this to be very helpful for new contributors as well as
regular contributors as it's another layer of tests being run which will
hopefully catch things sooner. One of the most convenient parts about using
Travis is that there's very little burden in terms of maintenance, and if things
go wrong we can easily turn travis completely off.
Note that this is *not* the metric by which a PR will be merged with. Using
travis will purely be another source for running tests, we will continue to gate
all PRs on bors.
This commit rewrites crate loading internally in attempt to look at less
metadata and provide nicer errors. The loading is now split up into a few
stages:
1. Collect a mapping of (hash => ~[Path]) for a set of candidate libraries for a
given search. The hash is the hash in the filename and the Path is the
location of the library in question. All candidates are filtered based on
their prefix/suffix (dylib/rlib appropriate) and then the hash/version are
split up and are compared (if necessary).
This means that if you're looking for an exact hash of library you don't have
to open up the metadata of all libraries named the same, but also in your
path.
2. Once this mapping is constructed, each (hash, ~[Path]) pair is filtered down
to just a Path. This is necessary because the same rlib could show up twice
in the path in multiple locations. Right now the filenames are based on just
the crate id, so this could be indicative of multiple version of a crate
during one crate_id lifetime in the path. If multiple duplicate crates are
found, an error is generated.
3. Now that we have a mapping of (hash => Path), we error on multiple versions
saying that multiple versions were found. Only if there's one (hash => Path)
pair do we actually return that Path and its metadata.
With this restructuring, it restructures code so errors which were assertions
previously are now first-class errors. Additionally, this should read much less
metadata with lots of crates of the same name or same version in a path.
Closes#11908