This permits all coercions to be performed in casts, but adds lints to warn in those cases.
Part of this patch moves cast checking to a later stage of type checking. We acquire obligations to check casts as part of type checking where we previously checked them. Once we have type checked a function or module, then we check any cast obligations which have been acquired. That means we have more type information available to check casts (this was crucial to making coercions work properly in place of some casts), but it means that casts cannot feed input into type inference.
[breaking change]
* Adds two new lints for trivial casts and trivial numeric casts, these are warn by default, but can cause errors if you build with warnings as errors. Previously, trivial numeric casts and casts to trait objects were allowed.
* The unused casts lint has gone.
* Interactions between casting and type inference have changed in subtle ways. Two ways this might manifest are:
- You may need to 'direct' casts more with extra type information, for example, in some cases where `foo as _ as T` succeeded, you may now need to specify the type for `_`
- Casts do not influence inference of integer types. E.g., the following used to type check:
```
let x = 42;
let y = &x as *const u32;
```
Because the cast would inform inference that `x` must have type `u32`. This no longer applies and the compiler will fallback to `i32` for `x` and thus there will be a type error in the cast. The solution is to add more type information:
```
let x: u32 = 42;
let y = &x as *const u32;
```
I've made some minor changes from the implementation attached to the RFC to try to minimize codegen. The methods now take `&Debug` trait objects rather than being parameterized and there are inlined stub methods that call to non-inlined methods to do the work.
r? @alexcrichton
cc @huonw for the `derive(Debug)` changes.
Switching from generic bounds to trait objects and having un-inlined
inner methods should cut down on the size of Debug impls, since we care
about the speed of a Debug implementation way less than binary bloat.
This changes the type of some public constants/statics in libunicode.
Notably some `&'static &'static [(char, char)]` have changed
to `&'static [(char, char)]`. The regexp crate seems to be the
sole user of these, yet this is technically a [breaking-change]
* Make num::UpperHex private. I was unable to determine why this struct
is public. The num module itself is not public, and the UpperHex struct
is not referenced anywhere in the core::fmt module. (Only the UpperHex
trait is reference.) num::LowerHex is not public.
* Remove the suffix parameters from the macros that generate integral
display traits.
The code to print the Debug::fmt suffixes was removed when Show was
renamed to Debug. It was an intentional change. From RFC 0565:
* Focus on the *runtime* aspects of a type; repeating information such
as suffixes for integer literals is not generally useful since that
data is readily available from the type definition.
* Because Show was renamed to Debug, rename show! to debug!.
* count_ones/zeros, trailing_ones/zeros return u32, not usize
* rotate_left/right take u32, not usize
* RADIX, MANTISSA_DIGITS, DIGITS, BITS, BYTES are u32, not usize
Doesn't touch pow because there's another PR for it.
[breaking-change]
This changes the type of some public constants/statics in libunicode.
Notably some `&'static &'static [(char, char)]` have changed
to `&'static [(char, char)]`. The regexp crate seems to be the
sole user of these, yet this is technically a [breaking-change]
* Make num::UpperHex private. I was unable to determine why this struct
is public. The num module itself is not public, and the UpperHex struct
is not referenced anywhere in the core::fmt module. (Only the UpperHex
trait is reference.) num::LowerHex is not public.
* Remove the suffix parameters from the macros that generate integral
display traits.
The code to print the Debug::fmt suffixes was removed when Show was
renamed to Debug. It was an intentional change. From RFC 0565:
* Focus on the *runtime* aspects of a type; repeating information such
as suffixes for integer literals is not generally useful since that
data is readily available from the type definition.
* Because Show was renamed to Debug, rename show! to debug!.
fmt and hash are pretty straightforward I think. sync is a bit more complex. I thought one or two of the `isize`s ought to be `i32`s, but that would require a bunch of casting (the root cause being the lack of atomics other than isize/usize).
r? @alexcrichton
into variance inference; fix various bugs in variance inference
so that it considers the correct set of constraints; modify infer to
consider the results of variance inference for type arguments.
There are a number of holes that the stability lint did not previously cover,
including:
* Types
* Bounds on type parameters on functions and impls
* Where clauses
* Imports
* Patterns (structs and enums)
These holes have all been fixed by overriding the `visit_path` function on the
AST visitor instead of a few specialized cases. This change also necessitated a
few stability changes:
* The `collections::fmt` module is now stable (it was already supposed to be).
* The `thread_local:👿:Key` type is now stable (it was already supposed to
be).
* The `std::rt::{begin_unwind, begin_unwind_fmt}` functions are now stable.
These are required via the `panic!` macro.
* The `std::old_io::stdio::{println, println_args}` functions are now stable.
These are required by the `print!` and `println!` macros.
* The `ops::{FnOnce, FnMut, Fn}` traits are now `#[stable]`. This is required to
make bounds with these traits stable. Note that manual implementations of
these traits are still gated by default, this stability only allows bounds
such as `F: FnOnce()`.
Additionally, the compiler now has special logic to ignore its own generated
`__test` module for the `--test` harness in terms of stability.
Closes#8962Closes#16360Closes#20327
[breaking-change]
The existence of these two functions is at odds with our current [error
conventions][conventions] which recommend that panicking and `Result`-like
variants should not be provided together.
[conventions]: https://github.com/rust-lang/rfcs/blob/master/text/0236-error-conventions.md#do-not-provide-both-result-and-fail-variants
This commit adds a new `borrow_state` function returning a `BorrowState` enum to
`RefCell` which serves as a replacemnt for the `try_borrow` and `try_borrow_mut`
functions.
The existence of these two functions is at odds with our current [error
conventions][conventions] which recommend that panicking and `Result`-like
variants should not be provided together.
[conventions]: https://github.com/rust-lang/rfcs/blob/master/text/0236-error-conventions.md#do-not-provide-both-result-and-fail-variants
This commit adds a new `borrow_state` function returning a `BorrowState` enum to
`RefCell` which serves as a replacemnt for the `try_borrow` and `try_borrow_mut`
functions.
This commit performs a final stabilization pass over the std::fmt module,
marking all necessary APIs as stable. One of the more interesting aspects of
this module is that it exposes a good deal of its runtime representation to the
outside world in order for `format_args!` to be able to construct the format
strings. Instead of hacking the compiler to assume that these items are stable,
this commit instead lays out a story for the stabilization and evolution of
these APIs.
There are three primary details used by the `format_args!` macro:
1. `Arguments` - an opaque package of a "compiled format string". This structure
is passed around and the `write` function is the source of truth for
transforming a compiled format string into a string at runtime. This must be
able to be constructed in stable code.
2. `Argument` - an opaque structure representing an argument to a format string.
This is *almost* a trait object as it's just a pointer/function pair, but due
to the function originating from one of many traits, it's not actually a
trait object. Like `Arguments`, this must be constructed from stable code.
3. `fmt::rt` - this module contains the runtime type definitions primarily for
the `rt::Argument` structure. Whenever an argument is formatted with
nonstandard flags, a corresponding `rt::Argument` is generated describing how
the argument is being formatted. This can be used to construct an
`Arguments`.
The primary interface to `std::fmt` is the `Arguments` structure, and as such
this type name is stabilize as-is today. It is expected for libraries to pass
around an `Arguments` structure to represent a pending formatted computation.
The remaining portions are largely "cruft" which would rather not be stabilized,
but due to the stability checks they must be. As a result, almost all pieces
have been renamed to represent that they are "version 1" of the formatting
representation. The theory is that at a later date if we change the
representation of these types we can add new definitions called "version 2" and
corresponding constructors for `Arguments`.
One of the other remaining large questions about the fmt module were how the
pending I/O reform would affect the signatures of methods in the module. Due to
[RFC 526][rfc], however, the writers of fmt are now incompatible with the
writers of io, so this question has largely been solved. As a result the
interfaces are largely stabilized as-is today.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0526-fmt-text-writer.md
Specifically, the following changes were made:
* The contents of `fmt::rt` were all moved under `fmt::rt::v1`
* `fmt::rt` is stable
* `fmt::rt::v1` is stable
* `Error` is stable
* `Writer` is stable
* `Writer::write_str` is stable
* `Writer::write_fmt` is stable
* `Formatter` is stable
* `Argument` has been renamed to `ArgumentV1` and is stable
* `ArgumentV1::new` is stable
* `ArgumentV1::from_uint` is stable
* `Arguments::new_v1` is stable (renamed from `new`)
* `Arguments::new_v1_formatted` is stable (renamed from `with_placeholders`)
* All formatting traits are now stable, as well as the `fmt` method.
* `fmt::write` is stable
* `fmt::format` is stable
* `Formatter::pad_integral` is stable
* `Formatter::pad` is stable
* `Formatter::write_str` is stable
* `Formatter::write_fmt` is stable
* Some assorted top level items which were only used by `format_args!` were
removed in favor of static functions on `ArgumentV1` as well.
* The formatting-flag-accessing methods remain unstable
Within the contents of the `fmt::rt::v1` module, the following actions were
taken:
* Reexports of all enum variants were removed
* All prefixes on enum variants were removed
* A few miscellaneous enum variants were renamed
* Otherwise all structs, fields, and variants were marked stable.
In addition to these actions in the `std::fmt` module, many implementations of
`Show` and `String` were stabilized as well.
In some other modules:
* `ToString` is now stable
* `ToString::to_string` is now stable
* `Vec` no longer implements `fmt::Writer` (this has moved to `String`)
This is a breaking change due to all of the changes to the `fmt::rt` module, but
this likely will not have much impact on existing programs.
Closes#20661
[breaking-change]
Spellfix for `Debug` trait documentation. Change "most all types should implement this" to "all types should implement this". Same fix for deprecated `Show` trait.
Spellfix for `Debug` trait documentation. Change "most all types should implement this" to "all types should implement this". Same fix for deprecated `Show` trait.