Fix span when suggesting to add an associated type bound
Fixes#87261
Note that this fix is not perfect, it ~~will still give incorrect~~ won't give suggestions in some situations:
- If the associated type is defined on a supertrait of those contained in the opaque type, it will fallback to the previous behaviour, e.g. if `AssocTy` is defined on the trait `Foo`, `Bar` has `Foo` as supertrait and the opaque type is a `impl Bar + Baz`.
- If the the associated type is defined on a generic trait and the opaque type includes two versions of that generic trait, e.g. the opaque type is `impl Foo<A> + Foo<B>`
Refactor vtable format for upcoming trait_upcasting feature.
This modifies vtable format:
1. reordering occurrence order of methods coming from different traits
2. include `VPtr`s for supertraits where this vtable cannot be directly reused during trait upcasting.
Also, during codegen, the vtables corresponding to these newly included `VPtr` will be requested and generated.
For the cases where this vtable can directly used, now the super trait vtable has exactly the same content to some prefix of this one.
r? `@bjorn3`
cc `@RalfJung`
cc `@rust-lang/wg-traits`
Support HIR wf checking for function signatures
During function type-checking, we normalize any associated types in
the function signature (argument types + return type), and then
create WF obligations for each of the normalized types. The HIR wf code
does not currently support this case, so any errors that we get have
imprecise spans.
This commit extends `ObligationCauseCode::WellFormed` to support
recording a function parameter, allowing us to get the corresponding
HIR type if an error occurs. Function typechecking is modified to
pass this information during signature normalization and WF checking.
The resulting code is fairly verbose, due to the fact that we can
no longer normalize the entire signature with a single function call.
As part of the refactoring, we now perform HIR-based WF checking
for several other 'typed items' (statics, consts, and inherent impls).
As a result, WF and projection errors in a function signature now
have a precise span, which points directly at the responsible type.
If a function signature is constructed via a macro, this will allow
the error message to point at the code 'most responsible' for the error
(e.g. a user-supplied macro argument).
When pretty printing, name placeholders as bound regions
Split from #85499
When we see a placeholder that we are going to print, treat it as a bound var (and add it to a `for<...>`
During function type-checking, we normalize any associated types in
the function signature (argument types + return type), and then
create WF obligations for each of the normalized types. The HIR wf code
does not currently support this case, so any errors that we get have
imprecise spans.
This commit extends `ObligationCauseCode::WellFormed` to support
recording a function parameter, allowing us to get the corresponding
HIR type if an error occurs. Function typechecking is modified to
pass this information during signature normalization and WF checking.
The resulting code is fairly verbose, due to the fact that we can
no longer normalize the entire signature with a single function call.
As part of the refactoring, we now perform HIR-based WF checking
for several other 'typed items' (statics, consts, and inherent impls).
As a result, WF and projection errors in a function signature now
have a precise span, which points directly at the responsible type.
If a function signature is constructed via a macro, this will allow
the error message to point at the code 'most responsible' for the error
(e.g. a user-supplied macro argument).
Better diagnostics with mismatched types due to implicit static lifetime
Fixes#78113
I think this is my first diagnostics PR...definitely happy to hear thoughts on the direction/implementation here.
I was originally just trying to solve the error above, where the lifetime on a GAT was causing a cryptic "mismatched types" error. But as I was writing this, I realized that this (unintentionally) also applied to a different case: `wf-in-foreign-fn-decls-issue-80468.rs`. I'm not sure if this diagnostic should get a new error code, or even reuse an existing one. And, there might be some ways to make this even more generalized. Also, the error is a bit more lengthy and verbose than probably needed. So thoughts there are welcome too.
This PR essentially ended up adding a new nice region error pass that triggers if a type doesn't match the self type of an impl which is selected because of a predicate because of an implicit static bound on that self type.
r? `@estebank`
Don't create references to uninitialized data in `List::from_arena`
Previously `result` and `arena_slice` were references pointing to uninitialized data, which is technically UB. They may have been fine because the pointed data is `Copy` and and they were only written to, but the semantics of this aren't clearly defined yet, and since we have a sound way to do the same thing I don't think we should keep the possibly-unsound way.
Remove nondeterminism in multiple-definitions test
Compare all fields in `DllImport` when sorting to avoid nondeterminism in the error for multiple inconsistent definitions of an extern function. Restore the multiple-definitions test.
Resolves#87084.
Make expansions stable for incr. comp.
This PR aims to make expansions stable for incr. comp. by using the same architecture as definitions:
- the interned identifier `ExpnId` contains a `CrateNum` and a crate-local id;
- bidirectional maps `ExpnHash <-> ExpnId` are setup;
- incr. comp. on-disk cache saves and reconstructs expansions using their `ExpnHash`.
I tried to use as many `LocalExpnId` as I could in the resolver code, but I may have missed a few opportunities.
All this will allow to use an `ExpnId` as a query key, and to force this query without recomputing caller queries. For instance, this will be used to implement #85999.
r? `@petrochenkov`
CTFE/Miri engine Pointer type overhaul
This fixes the long-standing problem that we are using `Scalar` as a type to represent pointers that might be integer values (since they point to a ZST). The main problem is that with int-to-ptr casts, there are multiple ways to represent the same pointer as a `Scalar` and it is unclear if "normalization" (i.e., the cast) already happened or not. This leads to ugly methods like `force_mplace_ptr` and `force_op_ptr`.
Another problem this solves is that in Miri, it would make a lot more sense to have the `Pointer::offset` field represent the full absolute address (instead of being relative to the `AllocId`). This means we can do ptr-to-int casts without access to any machine state, and it means that the overflow checks on pointer arithmetic are (finally!) accurate.
To solve this, the `Pointer` type is made entirely parametric over the provenance, so that we can use `Pointer<AllocId>` inside `Scalar` but use `Pointer<Option<AllocId>>` when accessing memory (where `None` represents the case that we could not figure out an `AllocId`; in that case the `offset` is an absolute address). Moreover, the `Provenance` trait determines if a pointer with a given provenance can be cast to an integer by simply dropping the provenance.
I hope this can be read commit-by-commit, but the first commit does the bulk of the work. It introduces some FIXMEs that are resolved later.
Fixes https://github.com/rust-lang/miri/issues/841
Miri PR: https://github.com/rust-lang/miri/pull/1851
r? `@oli-obk`
Update Rust Float-Parsing Algorithms to use the Eisel-Lemire algorithm.
# Summary
Rust, although it implements a correct float parser, has major performance issues in float parsing. Even for common floats, the performance can be 3-10x [slower](https://arxiv.org/pdf/2101.11408.pdf) than external libraries such as [lexical](https://github.com/Alexhuszagh/rust-lexical) and [fast-float-rust](https://github.com/aldanor/fast-float-rust).
Recently, major advances in float-parsing algorithms have been developed by Daniel Lemire, along with others, and implement a fast, performant, and correct float parser, with speeds up to 1200 MiB/s on Apple's M1 architecture for the [canada](0e2b5d163d/data/canada.txt) dataset, 10x faster than Rust's 130 MiB/s.
In addition, [edge-cases](https://github.com/rust-lang/rust/issues/85234) in Rust's [dec2flt](868c702d0c/library/core/src/num/dec2flt) algorithm can lead to over a 1600x slowdown relative to efficient algorithms. This is due to the use of Clinger's correct, but slow [AlgorithmM and Bellepheron](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.4152&rep=rep1&type=pdf), which have been improved by faster big-integer algorithms and the Eisel-Lemire algorithm, respectively.
Finally, this algorithm provides substantial improvements in the number of floats the Rust core library can parse. Denormal floats with a large number of digits cannot be parsed, due to use of the `Big32x40`, which simply does not have enough digits to round a float correctly. Using a custom decimal class, with much simpler logic, we can parse all valid decimal strings of any digit count.
```rust
// Issue in Rust's dec2fly.
"2.47032822920623272088284396434110686182e-324".parse::<f64>(); // Err(ParseFloatError { kind: Invalid })
```
# Solution
This pull request implements the Eisel-Lemire algorithm, modified from [fast-float-rust](https://github.com/aldanor/fast-float-rust) (which is licensed under Apache 2.0/MIT), along with numerous modifications to make it more amenable to inclusion in the Rust core library. The following describes both features in fast-float-rust and improvements in fast-float-rust for inclusion in core.
**Documentation**
Extensive documentation has been added to ensure the code base may be maintained by others, which explains the algorithms as well as various associated constants and routines. For example, two seemingly magical constants include documentation to describe how they were derived as follows:
```rust
// Round-to-even only happens for negative values of q
// when q ≥ −4 in the 64-bit case and when q ≥ −17 in
// the 32-bitcase.
//
// When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
// have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
// 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
//
// When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
// so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
// or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
// (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
// or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
//
// Thus we have that we only need to round ties to even when
// we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
// (in the 32-bit case). In both cases,the power of five(5^|q|)
// fits in a 64-bit word.
const MIN_EXPONENT_ROUND_TO_EVEN: i32;
const MAX_EXPONENT_ROUND_TO_EVEN: i32;
```
This ensures maintainability of the code base.
**Improvements for Disguised Fast-Path Cases**
The fast path in float parsing algorithms attempts to use native, machine floats to represent both the significant digits and the exponent, which is only possible if both can be exactly represented without rounding. In practice, this means that the significant digits must be 53-bits or less and the then exponent must be in the range `[-22, 22]` (for an f64). This is similar to the existing dec2flt implementation.
However, disguised fast-path cases exist, where there are few significant digits and an exponent above the valid range, such as `1.23e25`. In this case, powers-of-10 may be shifted from the exponent to the significant digits, discussed at length in https://github.com/rust-lang/rust/issues/85198.
**Digit Parsing Improvements**
Typically, integers are parsed from string 1-at-a-time, requiring unnecessary multiplications which can slow down parsing. An approach to parse 8 digits at a time using only 3 multiplications is described in length [here](https://johnnylee-sde.github.io/Fast-numeric-string-to-int/). This leads to significant performance improvements, and is implemented for both big and little-endian systems.
**Unsafe Changes**
Relative to fast-float-rust, this library makes less use of unsafe functionality and clearly documents it. This includes the refactoring and documentation of numerous unsafe methods undesirably marked as safe. The original code would look something like this, which is deceptively marked as safe for unsafe functionality.
```rust
impl AsciiStr {
#[inline]
pub fn step_by(&mut self, n: usize) -> &mut Self {
unsafe { self.ptr = self.ptr.add(n) };
self
}
}
...
#[inline]
fn parse_scientific(s: &mut AsciiStr<'_>) -> i64 {
// the first character is 'e'/'E' and scientific mode is enabled
let start = *s;
s.step();
...
}
```
The new code clearly documents safety concerns, and does not mark unsafe functionality as safe, leading to better safety guarantees.
```rust
impl AsciiStr {
/// Advance the view by n, advancing it in-place to (n..).
pub unsafe fn step_by(&mut self, n: usize) -> &mut Self {
// SAFETY: same as step_by, safe as long n is less than the buffer length
self.ptr = unsafe { self.ptr.add(n) };
self
}
}
...
/// Parse the scientific notation component of a float.
fn parse_scientific(s: &mut AsciiStr<'_>) -> i64 {
let start = *s;
// SAFETY: the first character is 'e'/'E' and scientific mode is enabled
unsafe {
s.step();
}
...
}
```
This allows us to trivially demonstrate the new implementation of dec2flt is safe.
**Inline Annotations Have Been Removed**
In the previous implementation of dec2flt, inline annotations exist practically nowhere in the entire module. Therefore, these annotations have been removed, which mostly does not impact [performance](https://github.com/aldanor/fast-float-rust/issues/15#issuecomment-864485157).
**Fixed Correctness Tests**
Numerous compile errors in `src/etc/test-float-parse` were present, due to deprecation of `time.clock()`, as well as the crate dependencies with `rand`. The tests have therefore been reworked as a [crate](https://github.com/Alexhuszagh/rust/tree/master/src/etc/test-float-parse), and any errors in `runtests.py` have been patched.
**Undefined Behavior**
An implementation of `check_len` which relied on undefined behavior (in fast-float-rust) has been refactored, to ensure that the behavior is well-defined. The original code is as follows:
```rust
#[inline]
pub fn check_len(&self, n: usize) -> bool {
unsafe { self.ptr.add(n) <= self.end }
}
```
And the new implementation is as follows:
```rust
/// Check if the slice at least `n` length.
fn check_len(&self, n: usize) -> bool {
n <= self.as_ref().len()
}
```
Note that this has since been fixed in [fast-float-rust](https://github.com/aldanor/fast-float-rust/pull/29).
**Inferring Binary Exponents**
Rather than explicitly store binary exponents, this new implementation infers them from the decimal exponent, reducing the amount of static storage required. This removes the requirement to store [611 i16s](868c702d0c/library/core/src/num/dec2flt/table.rs (L8)).
# Code Size
The code size, for all optimizations, does not considerably change relative to before for stripped builds, however it is **significantly** smaller prior to stripping the resulting binaries. These binary sizes were calculated on x86_64-unknown-linux-gnu.
**new**
Using rustc version 1.55.0-dev.
opt-level|size|size(stripped)
|:-:|:-:|:-:|
0|400k|300K
1|396k|292K
2|392k|292K
3|392k|296K
s|396k|292K
z|396k|292K
**old**
Using rustc version 1.53.0-nightly.
opt-level|size|size(stripped)
|:-:|:-:|:-:|
0|3.2M|304K
1|3.2M|292K
2|3.1M|284K
3|3.1M|284K
s|3.1M|284K
z|3.1M|284K
# Correctness
The dec2flt implementation passes all of Rust's unittests and comprehensive float parsing tests, along with numerous other tests such as Nigel Toa's comprehensive float [tests](https://github.com/nigeltao/parse-number-fxx-test-data) and Hrvoje Abraham [strtod_tests](https://github.com/ahrvoje/numerics/blob/master/strtod/strtod_tests.toml). Therefore, it is unlikely that this algorithm will incorrectly round parsed floats.
# Issues Addressed
This will fix and close the following issues:
- resolves#85198
- resolves#85214
- resolves#85234
- fixes#31407
- fixes#31109
- fixes#53015
- resolves#68396
- closes https://github.com/aldanor/fast-float-rust/issues/15
Implementation is based off fast-float-rust, with a few notable changes.
- Some unsafe methods have been removed.
- Safe methods with inherently unsafe functionality have been removed.
- All unsafe functionality is documented and provably safe.
- Extensive documentation has been added for simpler maintenance.
- Inline annotations on internal routines has been removed.
- Fixed Python errors in src/etc/test-float-parse/runtests.py.
- Updated test-float-parse to be a library, to avoid missing rand dependency.
- Added regression tests for #31109 and #31407 in core tests.
- Added regression tests for #31109 and #31407 in ui tests.
- Use the existing slice primitive to simplify shared dec2flt methods
- Remove Miri ignores from dec2flt, due to faster parsing times.
- resolves#85198
- resolves#85214
- resolves#85234
- fixes#31407
- fixes#31109
- fixes#53015
- resolves#68396
- closes https://github.com/aldanor/fast-float-rust/issues/15
Add initial implementation of HIR-based WF checking for diagnostics
During well-formed checking, we walk through all types 'nested' in
generic arguments. For example, WF-checking `Option<MyStruct<u8>>`
will cause us to check `MyStruct<u8>` and `u8`. However, this is done
on a `rustc_middle::ty::Ty`, which has no span information. As a result,
any errors that occur will have a very general span (e.g. the
definintion of an associated item).
This becomes a problem when macros are involved. In general, an
associated type like `type MyType = Option<MyStruct<u8>>;` may
have completely different spans for each nested type in the HIR. Using
the span of the entire associated item might end up pointing to a macro
invocation, even though a user-provided span is available in one of the
nested types.
This PR adds a framework for HIR-based well formed checking. This check
is only run during error reporting, and is used to obtain a more precise
span for an existing error. This is accomplished by individually
checking each 'nested' type in the HIR for the type, allowing us to
find the most-specific type (and span) that produces a given error.
The majority of the changes are to the error-reporting code. However,
some of the general trait code is modified to pass through more
information.
Since this has no soundness implications, I've implemented a minimal
version to begin with, which can be extended over time. In particular,
this only works for HIR items with a corresponding `DefId` (e.g. it will
not work for WF-checking performed within function bodies).
During well-formed checking, we walk through all types 'nested' in
generic arguments. For example, WF-checking `Option<MyStruct<u8>>`
will cause us to check `MyStruct<u8>` and `u8`. However, this is done
on a `rustc_middle::ty::Ty`, which has no span information. As a result,
any errors that occur will have a very general span (e.g. the
definintion of an associated item).
This becomes a problem when macros are involved. In general, an
associated type like `type MyType = Option<MyStruct<u8>>;` may
have completely different spans for each nested type in the HIR. Using
the span of the entire associated item might end up pointing to a macro
invocation, even though a user-provided span is available in one of the
nested types.
This PR adds a framework for HIR-based well formed checking. This check
is only run during error reporting, and is used to obtain a more precise
span for an existing error. This is accomplished by individually
checking each 'nested' type in the HIR for the type, allowing us to
find the most-specific type (and span) that produces a given error.
The majority of the changes are to the error-reporting code. However,
some of the general trait code is modified to pass through more
information.
Since this has no soundness implications, I've implemented a minimal
version to begin with, which can be extended over time. In particular,
this only works for HIR items with a corresponding `DefId` (e.g. it will
not work for WF-checking performed within function bodies).
TAIT: Infer all inference variables in opaque type substitutions via InferCx
The previous algorithm was correct for the example given in its
documentation, but when the TAIT was declared as a free item
instead of an associated item, the generic parameters were the
wrong ones.
cc `@spastorino`
r? `@nikomatsakis`
The previous algorithm was correct for the example given in its
documentation, but when the TAIT was declared as a free item
instead of an associated item, the generic parameters were the
wrong ones.
Replace associated item bound vars with placeholders when projecting
Fixes#76407Fixes#76826
Similar, but more limited, to #85499. This allows us to handle things like `for<'a> <T as Trait>::Assoc<'a>` but not `for<'a> <T as Trait<'a>>::Assoc`, unblocking GATs.
r? `@nikomatsakis`