Improve non_fmt_panic lint.
This change:
- fixes the span used by this lint in the case the panic argument is a single macro expansion (e.g. `panic!(a!())`);
- adds a suggestion for `panic!(format!(..))` to remove `format!()` instead of adding `"{}", ` or using `panic_any` like it does now; and
- fixes the incorrect suggestion to replace `panic![123]` by `panic_any(123]`.
Fixes#82109.
Fixes#82110.
Fixes#82111.
Example output:
```
warning: panic message is not a string literal
--> src/main.rs:8:12
|
8 | panic!(format!("error: {}", "oh no"));
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= note: `#[warn(non_fmt_panic)]` on by default
= note: this is no longer accepted in Rust 2021
= note: the panic!() macro supports formatting, so there's no need for the format!() macro here
help: remove the `format!(..)` macro call
|
8 | panic!("error: {}", "oh no");
| -- --
```
r? `@estebank`
add diagnostic items for OsString/PathBuf/Owned as well as to_vec on slice
This is adding diagnostic items to be used by rust-lang/rust-clippy#6730, but my understanding is the clippy-side change does need to be done over there since I am adding a new clippy feature.
Add diagnostic items to the following types:
OsString (os_string_type)
PathBuf (path_buf_type)
Owned (to_owned_trait)
As well as the to_vec method on slice/[T]
Implement RFC 2580: Pointer metadata & VTable
RFC: https://github.com/rust-lang/rfcs/pull/2580
~~Before merging this PR:~~
* [x] Wait for the end of the RFC’s [FCP to merge](https://github.com/rust-lang/rfcs/pull/2580#issuecomment-759145278).
* [x] Open a tracking issue: https://github.com/rust-lang/rust/issues/81513
* [x] Update `#[unstable]` attributes in the PR with the tracking issue number
----
This PR extends the language with a new lang item for the `Pointee` trait which is special-cased in trait resolution to implement it for all types. Even in generic contexts, parameters can be assumed to implement it without a corresponding bound.
For this I mostly imitated what the compiler was already doing for the `DiscriminantKind` trait. I’m very unfamiliar with compiler internals, so careful review is appreciated.
This PR also extends the standard library with new unstable APIs in `core::ptr` and `std::ptr`:
```rust
pub trait Pointee {
/// One of `()`, `usize`, or `DynMetadata<dyn SomeTrait>`
type Metadata: Copy + Send + Sync + Ord + Hash + Unpin;
}
pub trait Thin = Pointee<Metadata = ()>;
pub const fn metadata<T: ?Sized>(ptr: *const T) -> <T as Pointee>::Metadata {}
pub const fn from_raw_parts<T: ?Sized>(*const (), <T as Pointee>::Metadata) -> *const T {}
pub const fn from_raw_parts_mut<T: ?Sized>(*mut (),<T as Pointee>::Metadata) -> *mut T {}
impl<T: ?Sized> NonNull<T> {
pub const fn from_raw_parts(NonNull<()>, <T as Pointee>::Metadata) -> NonNull<T> {}
/// Convenience for `(ptr.cast(), metadata(ptr))`
pub const fn to_raw_parts(self) -> (NonNull<()>, <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *const T {
pub const fn to_raw_parts(self) -> (*const (), <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *mut T {
pub const fn to_raw_parts(self) -> (*mut (), <T as Pointee>::Metadata) {}
}
/// `<dyn SomeTrait as Pointee>::Metadata == DynMetadata<dyn SomeTrait>`
pub struct DynMetadata<Dyn: ?Sized> {
// Private pointer to vtable
}
impl<Dyn: ?Sized> DynMetadata<Dyn> {
pub fn size_of(self) -> usize {}
pub fn align_of(self) -> usize {}
pub fn layout(self) -> crate::alloc::Layout {}
}
unsafe impl<Dyn: ?Sized> Send for DynMetadata<Dyn> {}
unsafe impl<Dyn: ?Sized> Sync for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Debug for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Unpin for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Copy for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Clone for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Eq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialEq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Ord for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialOrd for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Hash for DynMetadata<Dyn> {}
```
API differences from the RFC, in areas noted as unresolved questions in the RFC:
* Module-level functions instead of associated `from_raw_parts` functions on `*const T` and `*mut T`, following the precedent of `null`, `slice_from_raw_parts`, etc.
* Added `to_raw_parts`
Fix SourceMap::start_point
`start_point` needs to return the *first* character's span, but it would
previously call `find_width_of_character_at_span` which returns the span
of the *last* character. The implementation is now fixed.
Other changes:
- Docs for start_point, end_point, find_width_of_character_at_span
updated
- Minor simplification in find_width_of_character_at_span code
Fixes#81800
Only store a LocalDefId in some HIR nodes
Some HIR nodes are guaranteed to be HIR owners: Item, TraitItem, ImplItem, ForeignItem and MacroDef.
As a consequence, we do not need to store the `HirId`'s `local_id`, and we can directly store a `LocalDefId`.
This allows to avoid a bit of the dance with `tcx.hir().local_def_id` and `tcx.hir().local_def_id_to_hir_id` mappings.
Add diagnostic items to the following types:
OsString (os_string_type)
PathBuf (path_buf_type)
Owned (to_owned_trait)
As well as the to_vec method on slice/[T]
Use debug log level for developer oriented logs
The information logged here is of limited general interest, while at the
same times makes it impractical to simply enable logging and share the
resulting logs due to the amount of the output produced.
Reduce log level from info to debug for developer oriented information.
For example, when building cargo, this reduces the amount of logs
generated by `RUSTC_LOG=info cargo build` from 265 MB to 79 MB.
Continuation of changes from 81350.
#[doc(inline)] sym_generated
Manually doc-inlines `rustc_span::sym_generated` into `sym`.
Previously the docs would not get inlined, causing the symbols to be undocumented as `sym_generated` is private.
r? `@jyn514`
The information logged here is of limited general interest, while at the
same times makes it impractical to simply enable logging and share the
resulting logs due to the amount of the output produced.
Reduce log level from info to debug for developer oriented information.
For example, when building cargo, this reduces the amount of logs
generated by `RUSTC_LOG=info cargo build` from 265 MB to 79 MB.
Continuation of changes from 81350.
faster few span methods
Touched few methods, so it should be (hopefully) faster.
First two changes: instead splitting string from start and taking only last piece, split it from the end.
Last: swapped conditions, to first check boolean parameter.
`start_point` needs to return the *first* character's span, but it would
previously call `find_width_of_character_at_span` which returns the span
of the *last* character. The implementation is now fixed.
Other changes:
- Docs for start_point, end_point, find_width_of_character_at_span
updated
- Minor simplification in find_width_of_character_at_span code
Fixes#81800
Add a new ABI to support cmse_nonsecure_call
This adds support for the `cmse_nonsecure_call` feature to be able to perform non-secure function call.
See the discussion on Zulip [here](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Support.20for.20callsite.20attributes/near/223054928).
This is a followup to #75810 which added `cmse_nonsecure_entry`. As for that PR, I assume that the changes are small enough to not have to go through a RFC but I don't mind doing one if needed 😃
I did not yet create a tracking issue, but if most of it is fine, I can create one and update the various files accordingly (they refer to the other tracking issue now).
On the Zulip chat, I believe `@jonas-schievink` volunteered to be a reviewer 💯
This allows to directly map from a DefPathHash to the crate it
originates from, without constructing side tables to do that mapping.
It also allows to reliably and cheaply check for DefPathHash collisions.
This commit adds a new ABI to be selected via `extern
"C-cmse-nonsecure-call"` on function pointers in order for the compiler to
apply the corresponding cmse_nonsecure_call callsite attribute.
For Armv8-M targets supporting TrustZone-M, this will perform a
non-secure function call by saving, clearing and calling a non-secure
function pointer using the BLXNS instruction.
See the page on the unstable book for details.
Signed-off-by: Hugues de Valon <hugues.devalon@arm.com>
Improve handling of spans around macro result parse errors
Fixes#81543
After we expand a macro, we try to parse the resulting tokens as a AST
node. This commit makes several improvements to how we handle spans when
an error occurs:
* Only ovewrite the original `Span` if it's a dummy span. This preserves
a more-specific span if one is available.
* Use `self.prev_token` instead of `self.token` when emitting an error
message after encountering EOF, since an EOF token always has a dummy
span
* Make `SourceMap::next_point` leave dummy spans unused. A dummy span
does not have a logical 'next point', since it's a zero-length span.
Re-using the span span preserves its 'dummy-ness' for other checks
Implement Rust 2021 panic
This implements the Rust 2021 versions of `panic!()`. See https://github.com/rust-lang/rust/issues/80162 and https://github.com/rust-lang/rfcs/pull/3007.
It does so by replacing `{std, core}::panic!()` by a bulitin macro that expands to either `$crate::panic::panic_2015!(..)` or `$crate::panic::panic_2021!(..)` depending on the edition of the caller.
This does not yet make std's panic an alias for core's panic on Rust 2021 as the RFC proposes. That will be a separate change: c5273bdfb2 That change is blocked on figuring out what to do with https://github.com/rust-lang/rust/issues/80846 first.
Fixes#81543
After we expand a macro, we try to parse the resulting tokens as a AST
node. This commit makes several improvements to how we handle spans when
an error occurs:
* Only ovewrite the original `Span` if it's a dummy span. This preserves
a more-specific span if one is available.
* Use `self.prev_token` instead of `self.token` when emitting an error
message after encountering EOF, since an EOF token always has a dummy
span
* Make `SourceMap::next_point` leave dummy spans unused. A dummy span
does not have a logical 'next point', since it's a zero-length span.
Re-using the span span preserves its 'dummy-ness' for other checks
Make more traits of the From/Into family diagnostic items
Following traits are now diagnostic items:
- `From` (unchanged)
- `Into`
- `TryFrom`
- `TryInto`
This also adds symbols for those items:
- `into_trait`
- `try_from_trait`
- `try_into_trait`
Related: https://github.com/rust-lang/rust-clippy/pull/6620#discussion_r562482587
Due to macro expansion, its possible to end up with two distinct
`ExpnId`s that have the same `ExpnData` contents. This violates the
contract of `HashStable`, since two unequal `ExpnId`s will end up with
equal `Fingerprint`s.
This commit adds a `disambiguator` field to `ExpnData`, which is used to
force two otherwise-equivalent `ExpnData`s to be distinct.
Following traits are now diagnostic items:
- `From` (unchanged)
- `Into`
- `TryFrom`
- `TryInto`
This also adds symbols for those items:
- `into_trait`
- `try_from_trait`
- `try_into_trait`
implement ptr::write without dedicated intrinsic
This makes `ptr::write` more consistent with `ptr::write_unaligned`, `ptr::read`, `ptr::read_unaligned`, all of which are implemented in terms of `copy_nonoverlapping`.
This means we can also remove `move_val_init` implementations in codegen and Miri, and its special handling in the borrow checker.
Also see [this Zulip discussion](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/ptr.3A.3Aread.20vs.20ptr.3A.3Awrite).
Properly handle `SyntaxContext` of dummy spans in incr comp
Fixes#80336
Due to macro expansion, we may end up with spans with an invalid
location and non-root `SyntaxContext`. This commits preserves the
`SyntaxContext` of such spans in the incremental cache, and ensures
that we always hash the `SyntaxContext` when computing the `Fingerprint`
of a `Span`
Previously, we would discard the `SyntaxContext` during serialization to
the incremental cache, causing the span's `Fingerprint` to change across
compilation sessions.
Rework diagnostics for wrong number of generic args (fixes#66228 and #71924)
This PR reworks the `wrong number of {} arguments` message, so that it provides more details and contextual hints.
Fixes#80336
Due to macro expansion, we may end up with spans with an invalid
location and non-root `SyntaxContext`. This commits preserves the
`SyntaxContext` of such spans in the incremental cache, and ensures
that we always hash the `SyntaxContext` when computing the `Fingerprint`
of a `Span`
Previously, we would discard the `SyntaxContext` during serialization to
the incremental cache, causing the span's `Fingerprint` to change across
compilation sessions.
Fix --pretty=expanded with --remap-path-prefix
Per https://github.com/rust-lang/rust/issues/80832, using
--pretty=expanded and --remap-path-prefix results in an ICE.
This is becasue the session source files table is stored in remapped
form, whereas --pretty-expanded looks up unremapped files. This remaps
the path prefixes before lookup.
~~There don't appear to be any existing tests for --pretty=expanded; I'll look into
adding some.~~ Never mind, found the pretty tests.
Fixes#80832
resolve: Scope visiting doesn't need an `Ident`
Resolution scope visitor (`fn visit_scopes`) currently takes an `Ident` parameter, but it doesn't need a full identifier, or even its span, it only needs the `SyntaxContext` part.
The `SyntaxContext` part is necessary because scope visitor has to jump to macro definition sites, so it has to be directed by macro expansion information somehow.
I think it's clearer to pass only the necessary part.
Yes, usually visiting happens as a part of an identifier resolution, but in cases like collecting traits in scope (#80765) or collecting typo suggestions that's not the case.
r? `@matthewjasper`
Per https://github.com/rust-lang/rust/issues/80832, using
--pretty=expanded and --remap-path-prefix results in an ICE.
This is becasue the session source files table is stored in remapped
form, whereas --pretty-expanded looks up unremapped files. This remaps
the path prefixes before lookup.
On structured suggestion for `let` -> `const` and `const` -> `let`, use
a proper `Span` and update tests to check the correct application.
Follow up to #80012.
Make `ExpnData` fields `krate` and `orig_id` private
These fields are only used by hygiene serialized, and should not be
accessed by anything outside of `rustc_span`.
- Adds optional default values to const generic parameters in the AST
and HIR
- Parses these optional default values
- Adds a `const_generics_defaults` feature gate
Edit rustc_span documentation
Various changes to the `rustc_span` docs, including the following:
- Additions to top-level docs
- Edits to the source_map module docs
- Edits to documentation for `Span` and `SpanData`
- Added intra-docs links
- Documentation for Levenshtein distances
- Fixed missing punctuation
Various changes to the `rustc_span` docs, including the following:
- Additions to top-level docs
- Edits to the source_map module docs
- Edits to documentation for `Span` and `SpanData`
- Added intra-docs links
- Documentation for Levenshtein distances
- Fixed missing punctuation
Remap instrument-coverage line numbers in doctests
This uses the `SourceMap::doctest_offset_line` method to re-map line
numbers from doctests. Remapping columns is not yet done, and rustdoc
still does not output the correct filename when running doctests in a
workspace.
Part of #79417 although I dont consider that fixed until both filenames
and columns are mapped correctly.
r? `@richkadel`
I might jump on zulip the comming days. Still need to figure out how to properly write tests for this, and deal with other doctest issues in the meantime.
Currently, the rustc_macros::symbols macro generates two
`macro_rules!` macros as its output. These two macros are
used in rustc_span/src/symbol.rs.
This means that each Symbol that we define is represented
in the AST of rustc_symbols twice: once in the definition
of the `define_symbols!` macro (similarly for the
`keywords! macro), and once in the rustc_span::symbols
definition.
That would be OK if there were only a handful of symbols,
but currently we define over 1100 symbols. The definition
of the `define_symbols!` macro contains the expanded definition
of each symbol, so that's a lot of AST storage wasted on a
macro that is used exactly once.
This commit removes the `define_symbols` macro, and simply
allows the proc macro to directly generate the
`rustc_symbols::symbol::sym` module.
The benefit is mainly in reducing memory wasted during
compilation of rustc itself. It should also reduce memory used
by Rust Analyzer.
This commit also reduces the size of the AST for symbol
definitions, by moving two `#[allow(...)]` attributes from
the symbol constants to the `sym` module. This eliminates 2200+
attribute nodes.
This commit also eliminates the need for the `digits_array`
constant. There's no need to store an array of Symbol values
for digits. We can simply define a constant of the base value,
and add to that base value.
This takes care of one "FIXME":
// FIXME: use direct symbol comparison for register class names
Instead of using string literals, this uses Symbol for register
class names.
Gives a performance increase over calling byte_pos_to_line_and_col
twice, partially because it decreases the function calling overhead,
potentially because it doesn't populate the line cache with lines that
turn out to belong to invalid spans, and likely because of some other
incidental improvements made possible by having more context available.
Fix some clippy lints
Happy to revert these if you think they're less readable, but personally I like them better now (especially the `else { if { ... } }` to `else if { ... }` change).
Extend doc keyword feature by allowing any ident
Part of #51315.
As suggested by ``@danielhenrymantilla`` in [this comment](https://github.com/rust-lang/rust/issues/51315#issuecomment-733879934), this PR extends `#[doc(keyword = "...")]` to allow any ident to be used as keyword. The final goal is to allow (proc-)macro crates' owners to write documentation of the keywords they might introduce.
r? ``@jyn514``
Move lev_distance to rustc_ast, make non-generic
rustc_ast currently has a few dependencies on rustc_lexer. Ideally, an AST
would not have any dependency its lexer, for minimizing
design-time dependencies. Breaking this dependency would also have practical
benefits, since modifying rustc_lexer would not trigger a rebuild of rustc_ast.
This commit does not remove the rustc_ast --> rustc_lexer dependency,
but it does remove one of the sources of this dependency, which is the
code that handles fuzzy matching between symbol names for making suggestions
in diagnostics. Since that code depends only on Symbol, it is easy to move
it to rustc_span. It might even be best to move it to a separate crate,
since other tools such as Cargo use the same algorithm, and have simply
contain a duplicate of the code.
This changes the signature of find_best_match_for_name so that it is no
longer generic over its input. I checked the optimized binaries, and this
function was duplicated for nearly every call site, because most call sites
used short-lived iterator chains, generic over Map and such. But there's
no good reason for a function like this to be generic, since all it does
is immediately convert the generic input (the Iterator impl) to a concrete
Vec<Symbol>. This has all of the costs of generics (duplicated method bodies)
with no benefit.
Changing find_best_match_for_name to be non-generic removed about 10KB of
code from the optimized binary. I know it's a drop in the bucket, but we have
to start reducing binary size, and beginning to tame over-use of generics
is part of that.
rustc_ast currently has a few dependencies on rustc_lexer. Ideally, an AST
would not have any dependency its lexer, for minimizing unnecessarily
design-time dependencies. Breaking this dependency would also have practical
benefits, since modifying rustc_lexer would not trigger a rebuild of rustc_ast.
This commit does not remove the rustc_ast --> rustc_lexer dependency,
but it does remove one of the sources of this dependency, which is the
code that handles fuzzy matching between symbol names for making suggestions
in diagnostics. Since that code depends only on Symbol, it is easy to move
it to rustc_span. It might even be best to move it to a separate crate,
since other tools such as Cargo use the same algorithm, and have simply
contain a duplicate of the code.
This changes the signature of find_best_match_for_name so that it is no
longer generic over its input. I checked the optimized binaries, and this
function was duplicated at nearly every call site, because most call sites
used short-lived iterator chains, generic over Map and such. But there's
no good reason for a function like this to be generic, since all it does
is immediately convert the generic input (the Iterator impl) to a concrete
Vec<Symbol>. This has all of the costs of generics (duplicated method bodies)
with no benefit.
Changing find_best_match_for_name to be non-generic removed about 10KB of
code from the optimized binary. I know it's a drop in the bucket, but we have
to start reducing binary size, and beginning to tame over-use of generics
is part of that.
They were originally called "opt-in, built-in traits" (OIBITs), but
people realized that the name was too confusing and a mouthful, and so
they were renamed to just "auto traits". The feature flag's name wasn't
updated, though, so that's what this PR does.
There are some other spots in the compiler that still refer to OIBITs,
but I don't think changing those now is worth it since they are internal
and not particularly relevant to this PR.
Also see <https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/opt-in.2C.20built-in.20traits.20(auto.20traits).20feature.20name>.
RFC-2229: Implement Precise Capture Analysis
### This PR introduces
- Feature gate for RFC-2229 (incomplete) `capture_disjoint_field`
- Rustc Attribute to print out the capture analysis `rustc_capture_analysis`
- Precise capture analysis
### Description of the analysis
1. If the feature gate is not set then all variables that are not local to the closure will be added to the list of captures. (This is for backcompat)
2. The rest of the analysis is based entirely on how the captured `Place`s are used within the closure. Precise information (i.e. projections) about the `Place` is maintained throughout.
3. To reduce the amount of information we need to keep track of, we do a minimization step. In this step, we determine a list such that no Place within this list represents an ancestor path to another entry in the list. Check rust-lang/project-rfc-2229#9 for more detailed examples.
4. To keep the compiler functional as before we implement a Bridge between the results of this new analysis to existing data structures used for closure captures. Note the new capture analysis results are only part of MaybeTypeckTables that is the information is only available during typeck-ing.
### Known issues
- Statements like `let _ = x` will make the compiler ICE when used within a closure with the feature enabled. More generally speaking the issue is caused by `let` statements that create no bindings and are init'ed using a Place expression.
### Testing
We removed the code that would handle the case where the feature gate is not set, to enable the feature as default and did a bors try and perf run. More information here: #78762
### Thanks
This has been slowly in the works for a while now.
I want to call out `@Azhng` `@ChrisPardy` `@null-sleep` `@jenniferwills` `@logmosier` `@roxelo` for working on this and the previous PRs that led up to this, `@nikomatsakis` for guiding us.
Closesrust-lang/project-rfc-2229#7Closesrust-lang/project-rfc-2229#9Closesrust-lang/project-rfc-2229#6Closesrust-lang/project-rfc-2229#19
r? `@nikomatsakis`
incr-comp: hash and serialize span end line/column
Hash both the length and the end location (line/column) of a span. If we
hash only the length, for example, then two otherwise equal spans with
different end locations will have the same hash. This can cause a
problem during incremental compilation wherein a previous result for a
query that depends on the end location of a span will be incorrectly
reused when the end location of the span it depends on has changed. A
similar analysis applies if some query depends specifically on the
length of the span, but we only hash the end location. So hash both.
Fix#46744, fix#59954, fix#63161, fix#73640, fix#73967, fix#74890, fix#75900
---
See #74890 for a more in-depth analysis.
I haven't thought about what other problems this root cause could be responsible for. Please let me know if anything springs to mind. I believe the issue has existed since the inception of incremental compilation.
Implement destructuring assignment for tuples
This is the first step towards implementing destructuring assignment (RFC: https://github.com/rust-lang/rfcs/pull/2909, tracking issue: #71126). This PR is the first part of #71156, which was split up to allow for easier review.
Quick summary: This change allows destructuring the LHS of an assignment if it's a (possibly nested) tuple.
It is implemented via a desugaring (AST -> HIR lowering) as follows:
```rust
(a,b) = (1,2)
```
... becomes ...
```rust
{
let (lhs0,lhs1) = (1,2);
a = lhs0;
b = lhs1;
}
```
Thanks to `@varkor` who helped with the implementation, particularly around default binding modes.
r? `@petrochenkov`