We apparently used to generate bad/incomplete debug info causing
debuggers not to find symbols of stack allocated variables. This was
somehow worked around by having frame pointers.
With the current codegen, this seems no longer necessary, so we can
remove the code that force-enables frame pointers whenever debug info
is requested.
Since certain situations, like profiling code profit from having frame
pointers, we add a -Cforce-frame-pointers flag to always enable frame
pointers.
Fixes#11906
Previously the features specified to LLVM via `-C target-feature` were only
reflected in the `TargetMachine` but this change *also* reflects these and the
base features inside each function itself. This change matches clang and...
Closesrust-lang-nursery/stdsimd#427
Executables crash in the probestack function otherwise... I haven't debugged
much further than that.
Signed-off-by: Emilio Cobos Álvarez <emilio@crisal.io>
This commit adds a new attribute to the Rust compiler specific to the wasm
target (and no other targets). The `#[wasm_import_module]` attribute is used to
specify the module that a name is imported from, and is used like so:
#[wasm_import_module = "./foo.js"]
extern {
fn some_js_function();
}
Here the import of the symbol `some_js_function` is tagged with the `./foo.js`
module in the wasm output file. Wasm-the-format includes two fields on all
imports, a module and a field. The field is the symbol name (`some_js_function`
above) and the module has historically unconditionally been `"env"`. I'm not
sure if this `"env"` convention has asm.js or LLVM roots, but regardless we'd
like the ability to configure it!
The proposed ES module integration with wasm (aka a wasm module is "just another
ES module") requires that the import module of wasm imports is interpreted as an
ES module import, meaning that you'll need to encode paths, NPM packages, etc.
As a result, we'll need this to be something other than `"env"`!
Unfortunately neither our version of LLVM nor LLD supports custom import modules
(aka anything not `"env"`). My hope is that by the time LLVM 7 is released both
will have support, but in the meantime this commit adds some primitive
encoding/decoding of wasm files to the compiler. This way rustc postprocesses
the wasm module that LLVM emits to ensure it's got all the imports we'd like to
have in it.
Eventually I'd ideally like to unconditionally require this attribute to be
placed on all `extern { ... }` blocks. For now though it seemed prudent to add
it as an unstable attribute, so for now it's not required (as that'd force usage
of a feature gate). Hopefully it doesn't take too long to "stabilize" this!
cc rust-lang-nursery/rust-wasm#29
This commit is an implementation of adding custom sections to wasm artifacts in
rustc. The intention here is to expose the ability of the wasm binary format to
contain custom sections with arbitrary user-defined data. Currently neither our
version of LLVM nor LLD supports this so the implementation is currently custom
to rustc itself.
The implementation here is to attach a `#[wasm_custom_section = "foo"]`
attribute to any `const` which has a type like `[u8; N]`. Other types of
constants aren't supported yet but may be added one day! This should hopefully
be enough to get off the ground with *some* custom section support.
The current semantics are that any constant tagged with `#[wasm_custom_section]`
section will be *appended* to the corresponding section in the final output wasm
artifact (and this affects dependencies linked in as well, not just the final
crate). This means that whatever is interpreting the contents must be able to
interpret binary-concatenated sections (or each constant needs to be in its own
custom section).
To test this change the existing `run-make` test suite was moved to a
`run-make-fulldeps` folder and a new `run-make` test suite was added which
applies to all targets by default. This test suite currently only has one test
which only runs for the wasm target (using a node.js script to use `WebAssembly`
in JS to parse the wasm output).
This is an implementation of the `#[target_feature]` syntax-related changes of
[RFC 2045][rfc]. Notably two changes have been implemented:
* The new syntax is `#[target_feature(enable = "..")]` instead of
`#[target_feature = "+.."]`. The `enable` key is necessary instead of the `+`
to indicate that a feature is being enabled, and a sub-list is used for
possible expansion in the future. Additionally within this syntax the feature
names being enabled are now whitelisted against a known set of target feature
names that we know about.
* The `#[target_feature]` attribute can only be applied to unsafe functions. It
was decided in the RFC that invoking an instruction possibly not defined for
the current processor is undefined behavior, so to enable this feature for now
it requires an `unsafe` intervention.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/2045-target-feature.md
This commit flags all allocation-related functions in liballoc as "this can't
unwind" which should largely resolve the size-related issues found on #42808.
The documentation on the trait was updated with such a restriction (they can't
panic) as well as some other words about the relative instability about
implementing a bullet-proof allocator.
Closes#42808
This commit implements stack probes on x86/x86_64 using the freshly landed
support upstream in LLVM. The purpose of stack probes here are to guarantee a
segfault on stack overflow rather than having a chance of running over the guard
page already present on all threads by accident.
At this time there's no support for any other architecture because LLVM itself
does not have support for other architectures.
This commit migrates the in-tree `libcompiler_builtins` to the upstream version
at https://github.com/rust-lang-nursery/compiler-builtins. The upstream version
has a number of intrinsics written in Rust and serves as an in-progress rewrite
of compiler-rt into Rust. Additionally it also contains all the existing
intrinsics defined in `libcompiler_builtins` for 128-bit integers.
It's been the intention since the beginning to make this transition but
previously it just lacked the manpower to get done. As this PR likely shows it
wasn't a trivial integration! Some highlight changes are:
* The PR rust-lang-nursery/compiler-builtins#166 contains a number of fixes
across platforms and also some refactorings to make the intrinsics easier to
read. The additional testing added there also fixed a number of integration
issues when pulling the repository into this tree.
* LTO with the compiler-builtins crate was fixed to link in the entire crate
after the LTO process as these intrinsics are excluded from LTO.
* Treatment of hidden symbols was updated as previously the
`#![compiler_builtins]` crate would mark all symbol *imports* as hidden
whereas it was only intended to mark *exports* as hidden.
Drop of arrays is now translated in trans::block in an ugly way that I
should clean up in a later PR, and does not handle panics in the middle
of an array drop, but this commit & PR are growing too big.
This commit adds a new attribute that instructs the compiler to emit
target specific code for a single function. For example, the following
function is permitted to use instructions that are part of SSE 4.2:
#[target_feature = "+sse4.2"]
fn foo() { ... }
In particular, use of this attribute does not require setting the
-C target-feature or -C target-cpu options on rustc.
This attribute does not have any protections built into it. For example,
nothing stops one from calling the above `foo` function on hosts without
SSE 4.2 support. Doing so may result in a SIGILL.
This commit also expands the target feature whitelist to include lzcnt,
popcnt and sse4a. Namely, lzcnt and popcnt have their own CPUID bits,
but were introduced with SSE4.
The librustc_llvm API remains mostly unchanged, except that llvm::Attribute is no longer a bitflag but represents only a *single* attribute.
The ability to store many attributes in a small number of bits and modify them without interacting with LLVM is only used in rustc_trans::abi and closely related modules, and only attributes for function arguments are considered there.
Thus rustc_trans::abi now has its own bit-packed representation of argument attributes, which are translated to rustc_llvm::Attribute when applying the attributes.