Required moving all fulldeps tests depending on `rand` to different locations as
now there's multiple `rand` crates that can't be implicitly linked against.
This commit adds a new target to the compiler: wasm32-unknown-unknown. This
target is a reimagining of what it looks like to generate WebAssembly code from
Rust. Instead of using Emscripten which can bring with it a weighty runtime this
instead is a target which uses only the LLVM backend for WebAssembly and a
"custom linker" for now which will hopefully one day be direct calls to lld.
Notable features of this target include:
* There is zero runtime footprint. The target assumes nothing exists other than
the wasm32 instruction set.
* There is zero toolchain footprint beyond adding the target. No custom linker
is needed, rustc contains everything.
* Very small wasm modules can be generated directly from Rust code using this
target.
* Most of the standard library is stubbed out to return an error, but anything
related to allocation works (aka `HashMap`, `Vec`, etc).
* Naturally, any `#[no_std]` crate should be 100% compatible with this new
target.
This target is currently somewhat janky due to how linking works. The "linking"
is currently unconditional whole program LTO (aka LLVM is being used as a
linker). Naturally that means compiling programs is pretty slow! Eventually
though this target should have a linker.
This target is also intended to be quite experimental. I'm hoping that this can
act as a catalyst for further experimentation in Rust with WebAssembly. Breaking
changes are very likely to land to this target, so it's not recommended to rely
on it in any critical capacity yet. We'll let you know when it's "production
ready".
---
Currently testing-wise this target is looking pretty good but isn't complete.
I've got almost the entire `run-pass` test suite working with this target (lots
of tests ignored, but many passing as well). The `core` test suite is still
getting LLVM bugs fixed to get that working and will take some time. Relatively
simple programs all seem to work though!
---
It's worth nothing that you may not immediately see the "smallest possible wasm
module" for the input you feed to rustc. For various reasons it's very difficult
to get rid of the final "bloat" in vanilla rustc (again, a real linker should
fix all this). For now what you'll have to do is:
cargo install --git https://github.com/alexcrichton/wasm-gc
wasm-gc foo.wasm bar.wasm
And then `bar.wasm` should be the smallest we can get it!
---
In any case for now I'd love feedback on this, particularly on the various
integration points if you've got better ideas of how to approach them!
This commit removes the `rand` crate from the standard library facade as
well as the `__rand` module in the standard library. Neither of these
were used in any meaningful way in the standard library itself. The only
need for randomness in libstd is to initialize the thread-local keys of
a `HashMap`, and that unconditionally used `OsRng` defined in the
standard library anyway.
The cruft of the `rand` crate and the extra `rand` support in the
standard library makes libstd slightly more difficult to port to new
platforms, namely WebAssembly which doesn't have any randomness at all
(without interfacing with JS). The purpose of this commit is to clarify
and streamline randomness in libstd, focusing on how it's only required
in one location, hashmap seeds.
Note that the `rand` crate out of tree has almost always been a drop-in
replacement for the `rand` crate in-tree, so any usage (accidental or
purposeful) of the crate in-tree should switch to the `rand` crate on
crates.io. This then also has the further benefit of avoiding
duplication (mostly) between the two crates!
This commit integrates the `jobserver` crate into the compiler. The crate was
previously integrated in to Cargo as part of rust-lang/cargo#4110. The purpose
here is to two-fold:
* Primarily the compiler can cooperate with Cargo on parallelism. When you run
`cargo build -j4` then this'll make sure that the entire build process between
Cargo/rustc won't use more than 4 cores, whereas today you'd get 4 rustc
instances which may all try to spawn lots of threads.
* Secondarily rustc/Cargo can now integrate with a foreign GNU `make` jobserver.
This means that if you call cargo/rustc from `make` or another
jobserver-compatible implementation it'll use foreign parallelism settings
instead of creating new ones locally.
As the number of parallel codegen instances in the compiler continues to grow
over time with the advent of incremental compilation it's expected that this'll
become more of a problem, so this is intended to nip concurrent concerns in the
bud by having all the tools to cooperate!
Note that while rustc has support for itself creating a jobserver it's far more
likely that rustc will always use the jobserver configured by Cargo. Cargo today
will now set a jobserver unconditionally for rustc to use.
This commit adds support to rustbuild to run crate unit tests (those defined by
`#[test]`) as well as documentation tests. All tests are powered by `cargo test`
under the hood.
Each step requires the `libtest` library is built for that corresponding stage.
Ideally the `test` crate would be a dev-dependency, but for now it's just easier
to ensure that we sequence everything in the right order.
Currently no filtering is implemented, so there's not actually a method of
testing *only* libstd or *only* libcore, but rather entire swaths of crates are
tested all at once.
A few points of note here are:
* The `coretest` and `collectionstest` crates are just listed as `[[test]]`
entires for `cargo test` to naturally pick up. This mean that `cargo test -p
core` actually runs all the tests for libcore.
* Libraries that aren't tested all mention `test = false` in their `Cargo.toml`
* Crates aren't currently allowed to have dev-dependencies due to
rust-lang/cargo#860, but we can likely alleviate this restriction once
workspaces are implemented.
cc #31590