Update minifier version to 0.2.1
This change and these changes come from an idea of `@camelid:` instead of creating a string, we just `write` the type into the file directly.
I don't think it'll have a big impact on perf but it's still a potential small improvement.
r? `@notriddle`
Update cargo
7 commits in 38472bc19f2f76e245eba54a6e97ee6821b3c1db..85e457e158db216a2938d51bc3b617a5a7fe6015
2022-05-31 02:03:24 +0000 to 2022-06-07 21:57:52 +0000
- Make -Z http-registry use index.crates.io when accessing crates-io (rust-lang/cargo#10725)
- Respect submodule update=none strategy in .gitmodules (rust-lang/cargo#10717)
- Expose rust-version through env var (rust-lang/cargo#10713)
- add validation for string "true"/"false" in lto profile (rust-lang/cargo#10676)
- Enhance documentation of testing (rust-lang/cargo#10726)
- Clear disk space on CI. (rust-lang/cargo#10724)
- Enforce to use tar v0.4.38 (rust-lang/cargo#10720)
Add build metrics to rustbuild
This PR adds a new module of rustbuild, `ci_profiler`, whose job is to gather as much information as possible about the CI build as possible and store it in a JSON file uploaded to `ci-artifacts`. Right now for each step it collects:
* Type name and debug representation of the `Step` object.
* Duration of the step (excluding child steps).
* Systemwide CPU stats for the duration of the step (both single core and all cores).
* Which child steps were executed.
This is capable of replacing both the scripts to collect CPU stats and the `[TIMING]` lines in build logs (not yet removed, until we port our tooling to use the CI profiler). The format is also extensible to be able in the future to collect more information.
r? `@Mark-Simulacrum`
library/std: Bump compiler_builtins
Some neat changes include faster float conversions & fixes for AVR 🙂
(note that's it's my first time upgrading `compiler_builtins`, so I'm not 100% sure if bumping `library/std/Cargo.toml` is enough; certainly seems to be so, though.)
Update to rebased rustc-rayon 0.4
In rayon-rs/rayon#938, miri uncovered a race in `rustc-rayon-core` that had already been fixed in the regular `rayon-core`. I have now rebased that fork onto the latest rayon branch, and published as 0.4. I also updated `indexmap` to bump the dependency.
`Cargo.lock` changes:
Updating indexmap v1.8.0 -> v1.8.2
Updating rayon v1.5.1 -> v1.5.3
Updating rayon-core v1.9.1 -> v1.9.3
Updating rustc-rayon v0.3.2 -> v0.4.0
Updating rustc-rayon-core v0.3.2 -> v0.4.1
macros: introduce `fluent_messages` macro
Adds a new `fluent_messages` macro which performs compile-time validation of the compiler's Fluent resources (i.e. that the resources parse and don't multiply define the same messages) and generates constants that make using those messages in diagnostics more ergonomic.
For example, given the following invocation of the macro..
```rust
fluent_messages! {
typeck => "./typeck.ftl",
}
```
..where `typeck.ftl` has the following contents..
```fluent
typeck-field-multiply-specified-in-initializer =
field `{$ident}` specified more than once
.label = used more than once
.label-previous-use = first use of `{$ident}`
```
...then the macro parse the Fluent resource, emitting a diagnostic if it fails to do so...
```text
error: could not parse Fluent resource
--> $DIR/test.rs:35:28
|
LL | missing_message => "./missing-message.ftl",
| ^^^^^^^^^^^^^^^^^^^^^^^
|
= help: see additional errors emitted
error: expected a message field for "missing-message"
--> ./missing-message.ftl:1:1
|
1 | missing-message =
| ^^^^^^^^^^^^^^^^^^
|
```
...or generating the following code if it succeeds:
```rust
pub static DEFAULT_LOCALE_RESOURCES: &'static [&'static str] = &[
include_str!("./typeck.ftl"),
];
mod fluent_generated {
mod typeck {
pub const field_multiply_specified_in_initializer: DiagnosticMessage =
DiagnosticMessage::fluent("typeck-field-multiply-specified-in-initializer");
pub const field_multiply_specified_in_initializer_label_previous_use: DiagnosticMessage =
DiagnosticMessage::fluent_attr(
"typeck-field-multiply-specified-in-initializer",
"previous-use-label"
);
}
}
```
When emitting a diagnostic, the generated constants can be used as follows:
```rust
let mut err = sess.struct_span_err(
span,
fluent::typeck::field_multiply_specified_in_initializer
);
err.span_label(
span,
fluent::typeck::field_multiply_specified_in_initializer_label
);
err.span_label(
previous_use_span,
fluent::typeck::field_multiply_specified_in_initializer_label_previous_use
);
err.emit();
```
I'd like to reduce the verbosity of referring to labels/notes/helps with this scheme (though it wasn't much better before), but I'll leave that for a follow-up.
r? `@oli-obk`
cc `@pvdrz` `@compiler-errors`
Update jemalloc to v5.3
Now that `jemalloc` version 5.3 has been released, this PR updates `tikv-jemalloc-sys` to the corresponding release.
The crates.io publishing issue seems to have been resolved for the `jemalloc-sys` package, and version 5.3.0 is now also available under the historical name (and should become the preferred crate to be used). Therefore, this PR also switches back to using `jemalloc-sys` instead of `tikv-jemalloc-sys`.
Adds a new `fluent_messages` macro which performs compile-time
validation of the compiler's Fluent resources (i.e. that the resources
parse and don't multiply define the same messages) and generates
constants that make using those messages in diagnostics more ergonomic.
For example, given the following invocation of the macro..
```ignore (rust)
fluent_messages! {
typeck => "./typeck.ftl",
}
```
..where `typeck.ftl` has the following contents..
```fluent
typeck-field-multiply-specified-in-initializer =
field `{$ident}` specified more than once
.label = used more than once
.label-previous-use = first use of `{$ident}`
```
...then the macro parse the Fluent resource, emitting a diagnostic if it
fails to do so, and will generate the following code:
```ignore (rust)
pub static DEFAULT_LOCALE_RESOURCES: &'static [&'static str] = &[
include_str!("./typeck.ftl"),
];
mod fluent_generated {
mod typeck {
pub const field_multiply_specified_in_initializer: DiagnosticMessage =
DiagnosticMessage::fluent("typeck-field-multiply-specified-in-initializer");
pub const field_multiply_specified_in_initializer_label_previous_use: DiagnosticMessage =
DiagnosticMessage::fluent_attr(
"typeck-field-multiply-specified-in-initializer",
"previous-use-label"
);
}
}
```
When emitting a diagnostic, the generated constants can be used as
follows:
```ignore (rust)
let mut err = sess.struct_span_err(
span,
fluent::typeck::field_multiply_specified_in_initializer
);
err.span_default_label(span);
err.span_label(
previous_use_span,
fluent::typeck::field_multiply_specified_in_initializer_label_previous_use
);
err.emit();
```
Signed-off-by: David Wood <david.wood@huawei.com>
In #95604 the compiler started generating a temporary symbols.o which is added
to the linker invocation. This object file has an `e_flags` which may be invalid
for 32-bit MIPS targets. Even though symbols.o doesn't contain code, linking
with [lld fails](https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/MipsArchTree.cpp#L79) with
```
rust-lld: error: foo-cgu.0.rcgu.o: ABI 'o32' is incompatible with target ABI 'n64'
```
because it omits the ABI bits (EF_MIPS_ABI_O32) so lld assumes it's using the
N64 ABI. This breaks linking on nightly for the out-of-tree [psx
target](https://github.com/ayrtonm/psx-sdk-rs/issues/9), the builtin
mipsel-sony-psp target (cc @overdrivenpotato) and any other 32-bit MIPS
target using lld.
This PR sets the ABI in `e_flags` to O32 since that's the only ABI for 32-bit
MIPS that LLVM supports. It also sets other `e_flags` bits based on the target.
I had to bump the object crate version since some of these constants were [added
recently](https://github.com/gimli-rs/object/pull/433). I'm not sure if this
PR needs a test, but I can confirm that it fixes the linking issue on both
targets I mentioned.
Use futex-based locks and thread parker on {Free, Open, DragonFly}BSD.
This switches *BSD to our futex-based locks and thread parker.
Tracking issue: https://github.com/rust-lang/rust/issues/93740
This is a draft, because this still needs a new version of the `libc` crate to be published that includes https://github.com/rust-lang/libc/pull/2770.
r? `@Amanieu`
Add a new Rust attribute to support embedding debugger visualizers
Implemented [this RFC](https://github.com/rust-lang/rfcs/pull/3191) to add support for embedding debugger visualizers into a PDB.
Added a new attribute `#[debugger_visualizer]` and updated the `CrateMetadata` to store debugger visualizers for crate dependencies.
RFC: https://github.com/rust-lang/rfcs/pull/3191
Avoid using `rand::thread_rng` in the stdlib benchmarks.
This is kind of an anti-pattern because it introduces extra nondeterminism for no real reason. In thread_rng's case this comes both from the random seed and also from the reseeding operations it does, which occasionally does syscalls (which adds additional nondeterminism). The impact of this would be pretty small in most cases, but it's a good practice to avoid (particularly because avoiding it was not hard).
Anyway, several of our benchmarks already did the right thing here anyway, so the change was pretty easy and mostly just applying it more universally. That said, the stdlib benchmarks aren't particularly stable (nor is our benchmark framework particularly great), so arguably this doesn't matter that much in practice.
~~Anyway, this also bumps the `rand` dev-dependency to 0.8, since it had fallen somewhat out of date.~~ Nevermind, too much of a headache.
Enable tracing for all queries
This allows you to log everything within a specific query, e.g.
```
env RUSTC_LOG=[mir_borrowck]
```
dumping all borrowck queries may be a bit verbose, so you can also restrict it to just an item of your choice:
```
env RUSTC_LOG=[mir_borrowck{key=\.\*name_of_item\.\*}]
```
the regex `.*` in the key name are because the key is a debug printed DefId, so you'd get all kinds of things like hashes in there. The tracing logs will show you the key, so you can restrict it further if you want.
Cleanup `DebuggerVisualizerFile` type and other minor cleanup of queries.
Merge the queries for debugger visualizers into a single query.
Revert move of `resolve_path` to `rustc_builtin_macros`. Update dependencies in Cargo.toml for `rustc_passes`.
Respond to PR comments. Load visualizer files into opaque bytes `Vec<u8>`. Debugger visualizers for dynamically linked crates should not be embedded in the current crate.
Update the unstable book with the new feature. Add the tracking issue for the debugger_visualizer feature.
Respond to PR comments and minor cleanups.
This tool will generate a JSON file with statistics about each
individual step to disk. It will be used in rust-lang/rust's CI to
replace the mix of scripts and log scraping we currently have to gather
this data.